diff options
author | miwi <miwi@FreeBSD.org> | 2009-04-24 01:02:20 +0800 |
---|---|---|
committer | miwi <miwi@FreeBSD.org> | 2009-04-24 01:02:20 +0800 |
commit | 99cecdd29130714ac760347756d1e615d404279d (patch) | |
tree | c3c48d35e02bb4e0123e97849aa508a3616d94f4 /science/py-mlpy | |
parent | 9566791e8eb91958788d9974cc2fc901e642ecb5 (diff) | |
download | freebsd-ports-gnome-99cecdd29130714ac760347756d1e615d404279d.tar.gz freebsd-ports-gnome-99cecdd29130714ac760347756d1e615d404279d.tar.zst freebsd-ports-gnome-99cecdd29130714ac760347756d1e615d404279d.zip |
Machine Learning PY (mlpy) is a high-performance Python package for
predictive modeling. It makes extensive use of numpy (http://scipy.org)
to provide fast N-dimensional array manipulation and easy integration of
C code. mlpy provides high level procedures that support, with few lines
of code, the design of rich Data Analysis Protocols (DAPs) for
preprocessing, clustering, predictive classification and feature
selection. Methods are available for feature weighting and ranking, data
resampling, error evaluation and experiment landscaping.The package
includes tools to measure stability in sets of ranked feature lists.
WWW: http://mlpy.fbk.eu/
PR: ports/133932
Submitted by: Wen Heping <wenheping at gmail.com>
Diffstat (limited to 'science/py-mlpy')
-rw-r--r-- | science/py-mlpy/Makefile | 29 | ||||
-rw-r--r-- | science/py-mlpy/distinfo | 3 | ||||
-rw-r--r-- | science/py-mlpy/pkg-descr | 11 | ||||
-rw-r--r-- | science/py-mlpy/pkg-plist | 81 |
4 files changed, 124 insertions, 0 deletions
diff --git a/science/py-mlpy/Makefile b/science/py-mlpy/Makefile new file mode 100644 index 000000000000..0769e7e13f53 --- /dev/null +++ b/science/py-mlpy/Makefile @@ -0,0 +1,29 @@ +# New ports collection makefile for: py-mlpy +# Date created: 18 April, 2009 +# Whom: Wen Heping <wenheping@gmail.com> +# +# $FreeBSD$ +# + +PORTNAME= mlpy +PORTVERSION= 2.0.0 +CATEGORIES= science python +MASTER_SITES= https://mlpy.fbk.eu/download/src/ +PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX} +DISTNAME= MLPY-${PORTVERSION} + +MAINTAINER= wenheping@gmail.com +COMMENT= High performance Python package for predictive modeling + +BUILD_DEPENDS= ${PYTHON_SITELIBDIR}/numpy:${PORTSDIR}/math/py-numpy +RUN_DEPENDS= ${BUILD_DEPENDS} +LIB_DEPENDS= gsl.13:${PORTSDIR}/math/gsl + +CFLAGS+= -I${LOCALBASE}/include +LDFLAGS+= -L${LOCALBASE}/lib +MAKE_ENV+= CFLAGS="${CFLAGS}" LDFLAGS="${LDFLAGS}" +USE_PYTHON= yes +USE_PYDISTUTILS= yes +PYDISTUTILS_PKGNAME= MLPY + +.include <bsd.port.mk> diff --git a/science/py-mlpy/distinfo b/science/py-mlpy/distinfo new file mode 100644 index 000000000000..4b887b59ed2e --- /dev/null +++ b/science/py-mlpy/distinfo @@ -0,0 +1,3 @@ +MD5 (MLPY-2.0.0.tar.gz) = 2f2b33f97849cba7d469926a7724e770 +SHA256 (MLPY-2.0.0.tar.gz) = f58fd590df0c22310cda4e1770a3ea4a195c552c8e33db01c168d2d10bcebf74 +SIZE (MLPY-2.0.0.tar.gz) = 118326 diff --git a/science/py-mlpy/pkg-descr b/science/py-mlpy/pkg-descr new file mode 100644 index 000000000000..a3ac58b890cc --- /dev/null +++ b/science/py-mlpy/pkg-descr @@ -0,0 +1,11 @@ +Machine Learning PY (mlpy) is a high-performance Python package for +predictive modeling. It makes extensive use of numpy (http://scipy.org) +to provide fast N-dimensional array manipulation and easy integration of +C code. mlpy provides high level procedures that support, with few lines +of code, the design of rich Data Analysis Protocols (DAPs) for +preprocessing, clustering, predictive classification and feature +selection. Methods are available for feature weighting and ranking, data +resampling, error evaluation and experiment landscaping.The package +includes tools to measure stability in sets of ranked feature lists. + +WWW: http://mlpy.fbk.eu/ diff --git a/science/py-mlpy/pkg-plist b/science/py-mlpy/pkg-plist new file mode 100644 index 000000000000..67d09b920783 --- /dev/null +++ b/science/py-mlpy/pkg-plist @@ -0,0 +1,81 @@ +bin/irelief-sigma +bin/srda-landscape +bin/svm-landscape +bin/fda-landscape +bin/knn-landscape +bin/pda-landscape +bin/dlda-landscape +bin/borda +bin/canberra +bin/canberraq +%%PYTHON_SITELIBDIR%%/mlpy/__init__.py +%%PYTHON_SITELIBDIR%%/mlpy/__init__.pyc +%%PYTHON_SITELIBDIR%%/mlpy/__init__.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_bmetrics.py +%%PYTHON_SITELIBDIR%%/mlpy/_bmetrics.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_bmetrics.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_borda.py +%%PYTHON_SITELIBDIR%%/mlpy/_borda.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_borda.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_canberra.py +%%PYTHON_SITELIBDIR%%/mlpy/_canberra.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_canberra.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_ci.py +%%PYTHON_SITELIBDIR%%/mlpy/_ci.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_ci.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_cwt.py +%%PYTHON_SITELIBDIR%%/mlpy/_cwt.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_cwt.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_data.py +%%PYTHON_SITELIBDIR%%/mlpy/_data.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_data.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_dlda.py +%%PYTHON_SITELIBDIR%%/mlpy/_dlda.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_dlda.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_dwt.so +%%PYTHON_SITELIBDIR%%/mlpy/_dwtfs.py +%%PYTHON_SITELIBDIR%%/mlpy/_dwtfs.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_dwtfs.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_fda.py +%%PYTHON_SITELIBDIR%%/mlpy/_fda.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_fda.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_hcluster.py +%%PYTHON_SITELIBDIR%%/mlpy/_hcluster.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_hcluster.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_irelief.py +%%PYTHON_SITELIBDIR%%/mlpy/_irelief.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_irelief.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_knn.py +%%PYTHON_SITELIBDIR%%/mlpy/_knn.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_knn.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_pda.py +%%PYTHON_SITELIBDIR%%/mlpy/_pda.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_pda.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_ranking.py +%%PYTHON_SITELIBDIR%%/mlpy/_ranking.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_ranking.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_resampling.py +%%PYTHON_SITELIBDIR%%/mlpy/_resampling.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_resampling.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_srda.py +%%PYTHON_SITELIBDIR%%/mlpy/_srda.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_srda.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_svm.py +%%PYTHON_SITELIBDIR%%/mlpy/_svm.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_svm.pyo +%%PYTHON_SITELIBDIR%%/mlpy/_wavelet.py +%%PYTHON_SITELIBDIR%%/mlpy/_wavelet.pyc +%%PYTHON_SITELIBDIR%%/mlpy/_wavelet.pyo +%%PYTHON_SITELIBDIR%%/mlpy/canberracore.so +%%PYTHON_SITELIBDIR%%/mlpy/cwb.so +%%PYTHON_SITELIBDIR%%/mlpy/gslpy.so +%%PYTHON_SITELIBDIR%%/mlpy/hccore.so +%%PYTHON_SITELIBDIR%%/mlpy/nncore.so +%%PYTHON_SITELIBDIR%%/mlpy/progressbar.py +%%PYTHON_SITELIBDIR%%/mlpy/progressbar.pyc +%%PYTHON_SITELIBDIR%%/mlpy/progressbar.pyo +%%PYTHON_SITELIBDIR%%/mlpy/svmcore.so +%%PYTHON_SITELIBDIR%%/mlpy/version.py +%%PYTHON_SITELIBDIR%%/mlpy/version.pyc +%%PYTHON_SITELIBDIR%%/mlpy/version.pyo +@dirrm %%PYTHON_SITELIBDIR%%/mlpy |