diff options
author | rafan <rafan@FreeBSD.org> | 2009-10-29 19:09:53 +0800 |
---|---|---|
committer | rafan <rafan@FreeBSD.org> | 2009-10-29 19:09:53 +0800 |
commit | 8c8bdfea3a8bfc782e10847b6a2a1a92fdd300de (patch) | |
tree | 273cd612ed06ebf551d2f0c31d37d1dfd2967506 /science | |
parent | 6439542f423d09269664b27191c75d80c8d7b5e2 (diff) | |
download | freebsd-ports-gnome-8c8bdfea3a8bfc782e10847b6a2a1a92fdd300de.tar.gz freebsd-ports-gnome-8c8bdfea3a8bfc782e10847b6a2a1a92fdd300de.tar.zst freebsd-ports-gnome-8c8bdfea3a8bfc782e10847b6a2a1a92fdd300de.zip |
- Update to 1.5
Diffstat (limited to 'science')
-rw-r--r-- | science/liblinear/Makefile | 2 | ||||
-rw-r--r-- | science/liblinear/distinfo | 6 | ||||
-rw-r--r-- | science/liblinear/pkg-descr | 7 |
3 files changed, 8 insertions, 7 deletions
diff --git a/science/liblinear/Makefile b/science/liblinear/Makefile index cce750d3ce3d..fda5ccdb8fb1 100644 --- a/science/liblinear/Makefile +++ b/science/liblinear/Makefile @@ -6,7 +6,7 @@ # PORTNAME= liblinear -PORTVERSION= 1.34 +PORTVERSION= 1.50 CATEGORIES= science math MASTER_SITES= http://www.csie.ntu.edu.tw/~cjlin/liblinear/ \ http://www.csie.ntu.edu.tw/~cjlin/liblinear/oldfiles/ diff --git a/science/liblinear/distinfo b/science/liblinear/distinfo index db014d8c84af..d9e438928971 100644 --- a/science/liblinear/distinfo +++ b/science/liblinear/distinfo @@ -1,3 +1,3 @@ -MD5 (liblinear-1.34.zip) = 788cd7d7b2500c0ccfdf75bab95ff656 -SHA256 (liblinear-1.34.zip) = 1f25b1ec3d021f6ac387bcd58c2ac5e536f52fe595ac45587f17da612affb08f -SIZE (liblinear-1.34.zip) = 207305 +MD5 (liblinear-1.5.zip) = 47024e6ff826ad044e5c9e264f9893c4 +SHA256 (liblinear-1.5.zip) = 8167364e225426de81dc009868950bdaa5af4f868c02ba89f80b737efdeff507 +SIZE (liblinear-1.5.zip) = 215752 diff --git a/science/liblinear/pkg-descr b/science/liblinear/pkg-descr index b0dc747b819b..14581ea99123 100644 --- a/science/liblinear/pkg-descr +++ b/science/liblinear/pkg-descr @@ -1,11 +1,12 @@ LIBLINEAR is a linear classifier for data with millions of instances and -features. It supports L2-regularized logistic regression (LR), L2-loss -linear SVM, and L1-loss linear SVM. +features. It supports L2-regularized classifiers (L2-loss linear SVM, +L1-loss linear SVM, and logistic regression), L1-regularized classifiers +(L2-loss linear SVM and logistic regression). Main features of LIBLINEAR include - Same data format as LIBSVM and similar usage -- One-vs-the rest multi-class classification +- One-vs-the rest and Crammer & Singer multi-class classification - Cross validation for model selection - Probability estimates (logistic regression only) - Weights for unbalanced data |