aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--science/liblinear/Makefile2
-rw-r--r--science/liblinear/distinfo6
-rw-r--r--science/liblinear/pkg-descr7
3 files changed, 8 insertions, 7 deletions
diff --git a/science/liblinear/Makefile b/science/liblinear/Makefile
index cce750d3ce3d..fda5ccdb8fb1 100644
--- a/science/liblinear/Makefile
+++ b/science/liblinear/Makefile
@@ -6,7 +6,7 @@
#
PORTNAME= liblinear
-PORTVERSION= 1.34
+PORTVERSION= 1.50
CATEGORIES= science math
MASTER_SITES= http://www.csie.ntu.edu.tw/~cjlin/liblinear/ \
http://www.csie.ntu.edu.tw/~cjlin/liblinear/oldfiles/
diff --git a/science/liblinear/distinfo b/science/liblinear/distinfo
index db014d8c84af..d9e438928971 100644
--- a/science/liblinear/distinfo
+++ b/science/liblinear/distinfo
@@ -1,3 +1,3 @@
-MD5 (liblinear-1.34.zip) = 788cd7d7b2500c0ccfdf75bab95ff656
-SHA256 (liblinear-1.34.zip) = 1f25b1ec3d021f6ac387bcd58c2ac5e536f52fe595ac45587f17da612affb08f
-SIZE (liblinear-1.34.zip) = 207305
+MD5 (liblinear-1.5.zip) = 47024e6ff826ad044e5c9e264f9893c4
+SHA256 (liblinear-1.5.zip) = 8167364e225426de81dc009868950bdaa5af4f868c02ba89f80b737efdeff507
+SIZE (liblinear-1.5.zip) = 215752
diff --git a/science/liblinear/pkg-descr b/science/liblinear/pkg-descr
index b0dc747b819b..14581ea99123 100644
--- a/science/liblinear/pkg-descr
+++ b/science/liblinear/pkg-descr
@@ -1,11 +1,12 @@
LIBLINEAR is a linear classifier for data with millions of instances and
-features. It supports L2-regularized logistic regression (LR), L2-loss
-linear SVM, and L1-loss linear SVM.
+features. It supports L2-regularized classifiers (L2-loss linear SVM,
+L1-loss linear SVM, and logistic regression), L1-regularized classifiers
+(L2-loss linear SVM and logistic regression).
Main features of LIBLINEAR include
- Same data format as LIBSVM and similar usage
-- One-vs-the rest multi-class classification
+- One-vs-the rest and Crammer & Singer multi-class classification
- Cross validation for model selection
- Probability estimates (logistic regression only)
- Weights for unbalanced data