diff options
author | Alex Beregszaszi <alex@rtfs.hu> | 2017-04-18 20:41:16 +0800 |
---|---|---|
committer | Alex Beregszaszi <alex@rtfs.hu> | 2017-11-22 11:07:54 +0800 |
commit | c3a6db725606f14183b3af1f4954f196857afe33 (patch) | |
tree | f9315cf3327f40dc7420001738afd735fedeaa5f /docs/julia.rst | |
parent | 2a91eb953850b83b121867d95ba1cf6541b4ce7c (diff) | |
download | dexon-solidity-c3a6db725606f14183b3af1f4954f196857afe33.tar.gz dexon-solidity-c3a6db725606f14183b3af1f4954f196857afe33.tar.zst dexon-solidity-c3a6db725606f14183b3af1f4954f196857afe33.zip |
Describe built-in Julia functions
Diffstat (limited to 'docs/julia.rst')
-rw-r--r-- | docs/julia.rst | 164 |
1 files changed, 163 insertions, 1 deletions
diff --git a/docs/julia.rst b/docs/julia.rst index 1343f706..5203b522 100644 --- a/docs/julia.rst +++ b/docs/julia.rst @@ -18,7 +18,7 @@ for-loops, switch-statements, expressions and assignments to variables. JULIA in itself does not even provide operators. If the EVM is targeted, opcodes will be available as built-in functions, but they can be reimplemented -if the backend changes. +if the backend changes. For a list of mandatory built-in functions, see the section below. The following example program assumes that the EVM opcodes ``mul``, ``div`` and ``mod`` are available either natively or as functions and computes exponentiation. @@ -187,3 +187,165 @@ For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO where hex is the hexadecimal decoding function E(G, L, n: DecimalNumber) = G, L, dec(n), where dec is the decimal decoding function + +Low-level Functions +------------------- + +The following functions must be available: + ++---------------------------------------------------------------------------------------------------------------+ +| *Arithmetics* | ++---------------------------------------------------------------------------------------------------------------+ +| add256(x:256, y:256) -> z:256 | x + y | ++---------------------------------------------------------------------------------------------------------------+ +| sub256(x:256, y:256) -> z:256 | x - y | ++---------------------------------------------------------------------------------------------------------------+ +| mul256(x:256, y:256) -> z:256 | x * y | ++---------------------------------------------------------------------------------------------------------------+ +| div256(x:256, y:256) -> z:256 | x / y | ++---------------------------------------------------------------------------------------------------------------+ +| sdiv256(x:256, y:256) -> z:256 | x / y, for signed numbers in two's complement | ++---------------------------------------------------------------------------------------------------------------+ +| mod256(x:256, y:256) -> z:256 | x % y | ++---------------------------------------------------------------------------------------------------------------+ +| smod256(x:256, y:256) -> z:256 | x % y, for signed numbers in two's complement | ++---------------------------------------------------------------------------------------------------------------+ +| signextend256(i:256, x:256) -> z:256 | sign extend from (i*8+7)th bit counting from least significant | ++---------------------------------------------------------------------------------------------------------------+ +| exp256(x:256, y:256) -> z:256 | x to the power of y | ++---------------------------------------------------------------------------------------------------------------+ +| addmod256(x:256, y:256, m:256) -> z:256 | (x + y) % m with arbitrary precision arithmetics | ++---------------------------------------------------------------------------------------------------------------+ +| mulmod256(x:256, y:256, m:256) -> z:256 | (x * y) % m with arbitrary precision arithmetics | ++---------------------------------------------------------------------------------------------------------------+ +| lt256(x:256, y:256) -> z:bool | 1 if x < y, 0 otherwise | ++---------------------------------------------------------------------------------------------------------------+ +| gt256(x:256, y:256) -> z:bool | 1 if x > y, 0 otherwise | ++---------------------------------------------------------------------------------------------------------------+ +| slt256(x:256, y:256) -> z:bool | 1 if x < y, 0 otherwise, for signed numbers in two's complement | ++---------------------------------------------------------------------------------------------------------------+ +| sgt256(x:256, y:256) -> z:bool | 1 if x > y, 0 otherwise, for signed numbers in two's complement | ++---------------------------------------------------------------------------------------------------------------+ +| eq256(x:256, y:256) -> z:bool | 1 if x == y, 0 otherwise | ++---------------------------------------------------------------------------------------------------------------+ +| not256(x:256) -> z:256 | ~x, every bit of x is negated | ++---------------------------------------------------------------------------------------------------------------+ +| and256(x:256, y:256) -> z:256 | bitwise and of x and y | ++---------------------------------------------------------------------------------------------------------------+ +| or256(x:256, y:256) -> z:256 | bitwise or of x and y | ++---------------------------------------------------------------------------------------------------------------+ +| xor256(x:256, y:256) -> z:256 | bitwise xor of x and y | ++---------------------------------------------------------------------------------------------------------------+ +| shl256(x:256, y:256) -> z:256 | logical left shift of x by y | ++---------------------------------------------------------------------------------------------------------------+ +| shr256(x:256, y:256) -> z:256 | logical right shift of x by y | ++---------------------------------------------------------------------------------------------------------------+ +| sar256(x:256, y:256) -> z:256 | arithmetic right shift of x by y | ++---------------------------------------------------------------------------------------------------------------+ +| byte(n:256, x:256) -> v:256 | nth byte of x, where the most significant byte is the 0th byte | +| Cannot this be just replaced by and256(shr256(n, x), 0xff) and let it be optimised out by the EVM backend? | ++---------------------------------------------------------------------------------------------------------------+ +| *Memory and storage* | ++---------------------------------------------------------------------------------------------------------------+ +| mload(p:256) -> v:256 | mem[p..(p+32)) | ++---------------------------------------------------------------------------------------------------------------+ +| mstore(p:256, v:256) | mem[p..(p+32)) := v | ++---------------------------------------------------------------------------------------------------------------+ +| mstore8(p:256, v:256) | mem[p] := v & 0xff - only modifies a single byte | ++---------------------------------------------------------------------------------------------------------------+ +| sload(p:256) -> v:256 | storage[p] | ++---------------------------------------------------------------------------------------------------------------+ +| sstore(p:256, v:256) | storage[p] := v | ++---------------------------------------------------------------------------------------------------------------+ +| msize() -> size:256 | size of memory, i.e. largest accessed memory index, albeit due | +| | due to the memory extension function, which extends by words, | +| | this will always be a multiple of 32 bytes | ++---------------------------------------------------------------------------------------------------------------+ +| *Execution control* | ++---------------------------------------------------------------------------------------------------------------+ +| create(v:256, p:256, s:256) | create new contract with code mem[p..(p+s)) and send v wei | +| | and return the new address | ++---------------------------------------------------------------------------------------------------------------+ +| call(g:256, a:256, v:256, in:256, | call contract at address a with input mem[in..(in+insize)) | +| insize:256, out:256, outsize:256) -> r:256 | providing g gas and v wei and output area | +| | mem[out..(out+outsize)) returning 0 on error (eg. out of gas) | +| | and 1 on success | ++---------------------------------------------------------------------------------------------------------------+ +| callcode(g:256, a:256, v:256, in:256, | identical to `call` but only use the code from a and stay | +| insize:256, out:256, outsize:256) -> r:256 | in the context of the current contract otherwise | ++---------------------------------------------------------------------------------------------------------------+ +| delegatecall(g:256, a:256, in:256, | identical to `callcode` but also keep ``caller`` | +| insize:256, out:256, outsize:256) -> r:256 | and ``callvalue`` | ++---------------------------------------------------------------------------------------------------------------+ +| stop() | stop execution, identical to return(0,0) | +| Perhaps it would make sense retiring this as it equals to return(0,0). It can be an optimisation by the EVM | +| backend. | ++---------------------------------------------------------------------------------------------------------------+ +| abort() | abort (equals to invalid instruction on EVM) | ++---------------------------------------------------------------------------------------------------------------+ +| return(p:256, s:256) | end execution, return data mem[p..(p+s)) | ++---------------------------------------------------------------------------------------------------------------+ +| revert(p:256, s:256) | end execution, revert state changes, return data mem[p..(p+s)) | ++---------------------------------------------------------------------------------------------------------------+ +| selfdestruct(a:256) | end execution, destroy current contract and send funds to a | ++---------------------------------------------------------------------------------------------------------------+ +| log0(p:256, s:256) | log without topics and data mem[p..(p+s)) | ++---------------------------------------------------------------------------------------------------------------+ +| log1(p:256, s:256, t1:256) | log with topic t1 and data mem[p..(p+s)) | ++---------------------------------------------------------------------------------------------------------------+ +| log2(p:256, s:256, t1:256, t2:256) | log with topics t1, t2 and data mem[p..(p+s)) | ++---------------------------------------------------------------------------------------------------------------+ +| log3(p:256, s:256, t1:256, t2:256, | log with topics t, t2, t3 and data mem[p..(p+s)) | +| t3:256) | | ++---------------------------------------------------------------------------------------------------------------+ +| log4(p:256, s:256, t1:256, t2:256, | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) | +| t3:256, t4:256) | | ++---------------------------------------------------------------------------------------------------------------+ +| *State queries* | ++---------------------------------------------------------------------------------------------------------------+ +| blockcoinbase() -> address:256 | current mining beneficiary | ++---------------------------------------------------------------------------------------------------------------+ +| blockdifficulty() -> difficulty:256 | difficulty of the current block | ++---------------------------------------------------------------------------------------------------------------+ +| blockgaslimit() -> limit:256 | block gas limit of the current block | ++---------------------------------------------------------------------------------------------------------------+ +| blockhash(b:256) -> hash:256 | hash of block nr b - only for last 256 blocks excluding current | ++---------------------------------------------------------------------------------------------------------------+ +| blocknumber() -> block:256 | current block number | ++---------------------------------------------------------------------------------------------------------------+ +| blocktimestamp() -> timestamp:256 | timestamp of the current block in seconds since the epoch | ++---------------------------------------------------------------------------------------------------------------+ +| txorigin() -> address:256 | transaction sender | ++---------------------------------------------------------------------------------------------------------------+ +| txgasprice() -> price:256 | gas price of the transaction | ++---------------------------------------------------------------------------------------------------------------+ +| gasleft() -> gas:256 | gas still available to execution | ++---------------------------------------------------------------------------------------------------------------+ +| balance(a:256) -> v:256 | wei balance at address a | ++---------------------------------------------------------------------------------------------------------------+ +| this() -> address:256 | address of the current contract / execution context | ++---------------------------------------------------------------------------------------------------------------+ +| caller() -> address:256 | call sender (excluding delegatecall) | ++---------------------------------------------------------------------------------------------------------------+ +| callvalue() -> v:256 | wei sent together with the current call | ++---------------------------------------------------------------------------------------------------------------+ +| calldataload(p:256) -> v:256 | call data starting from position p (32 bytes) | ++---------------------------------------------------------------------------------------------------------------+ +| calldatasize() -> v:256 | size of call data in bytes | ++---------------------------------------------------------------------------------------------------------------+ +| calldatacopy(t:256, f:256, s:256) | copy s bytes from calldata at position f to mem at position t | ++---------------------------------------------------------------------------------------------------------------+ +| codesize() -> size:256 | size of the code of the current contract / execution context | ++---------------------------------------------------------------------------------------------------------------+ +| codecopy(t:256, f:256, s:256) | copy s bytes from code at position f to mem at position t | ++---------------------------------------------------------------------------------------------------------------+ +| extcodesize(a:256) -> size:256 | size of the code at address a | ++---------------------------------------------------------------------------------------------------------------+ +| extcodecopy(a:256, t:256, f:256, s:256) | like codecopy(t, f, s) but take code at address a | ++---------------------------------------------------------------------------------------------------------------+ +| *Others* | ++---------------------------------------------------------------------------------------------------------------+ +| discard256(unused:256) | discard value | ++---------------------------------------------------------------------------------------------------------------+ +| sha3(p:256, s:256) -> v:256 | keccak(mem[p...(p+s))) | ++---------------------------------------------------------------------------------------------------------------+ |