aboutsummaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
authorAlex Beregszaszi <alex@rtfs.hu>2017-04-18 20:41:16 +0800
committerAlex Beregszaszi <alex@rtfs.hu>2017-11-22 11:07:54 +0800
commitc3a6db725606f14183b3af1f4954f196857afe33 (patch)
treef9315cf3327f40dc7420001738afd735fedeaa5f /docs
parent2a91eb953850b83b121867d95ba1cf6541b4ce7c (diff)
downloaddexon-solidity-c3a6db725606f14183b3af1f4954f196857afe33.tar.gz
dexon-solidity-c3a6db725606f14183b3af1f4954f196857afe33.tar.zst
dexon-solidity-c3a6db725606f14183b3af1f4954f196857afe33.zip
Describe built-in Julia functions
Diffstat (limited to 'docs')
-rw-r--r--docs/julia.rst164
1 files changed, 163 insertions, 1 deletions
diff --git a/docs/julia.rst b/docs/julia.rst
index 1343f706..5203b522 100644
--- a/docs/julia.rst
+++ b/docs/julia.rst
@@ -18,7 +18,7 @@ for-loops, switch-statements, expressions and assignments to variables.
JULIA in itself does not even provide operators. If the EVM is targeted,
opcodes will be available as built-in functions, but they can be reimplemented
-if the backend changes.
+if the backend changes. For a list of mandatory built-in functions, see the section below.
The following example program assumes that the EVM opcodes ``mul``, ``div``
and ``mod`` are available either natively or as functions and computes exponentiation.
@@ -187,3 +187,165 @@ For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO
where hex is the hexadecimal decoding function
E(G, L, n: DecimalNumber) = G, L, dec(n),
where dec is the decimal decoding function
+
+Low-level Functions
+-------------------
+
+The following functions must be available:
+
++---------------------------------------------------------------------------------------------------------------+
+| *Arithmetics* |
++---------------------------------------------------------------------------------------------------------------+
+| add256(x:256, y:256) -> z:256 | x + y |
++---------------------------------------------------------------------------------------------------------------+
+| sub256(x:256, y:256) -> z:256 | x - y |
++---------------------------------------------------------------------------------------------------------------+
+| mul256(x:256, y:256) -> z:256 | x * y |
++---------------------------------------------------------------------------------------------------------------+
+| div256(x:256, y:256) -> z:256 | x / y |
++---------------------------------------------------------------------------------------------------------------+
+| sdiv256(x:256, y:256) -> z:256 | x / y, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| mod256(x:256, y:256) -> z:256 | x % y |
++---------------------------------------------------------------------------------------------------------------+
+| smod256(x:256, y:256) -> z:256 | x % y, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| signextend256(i:256, x:256) -> z:256 | sign extend from (i*8+7)th bit counting from least significant |
++---------------------------------------------------------------------------------------------------------------+
+| exp256(x:256, y:256) -> z:256 | x to the power of y |
++---------------------------------------------------------------------------------------------------------------+
+| addmod256(x:256, y:256, m:256) -> z:256 | (x + y) % m with arbitrary precision arithmetics |
++---------------------------------------------------------------------------------------------------------------+
+| mulmod256(x:256, y:256, m:256) -> z:256 | (x * y) % m with arbitrary precision arithmetics |
++---------------------------------------------------------------------------------------------------------------+
+| lt256(x:256, y:256) -> z:bool | 1 if x < y, 0 otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| gt256(x:256, y:256) -> z:bool | 1 if x > y, 0 otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| slt256(x:256, y:256) -> z:bool | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| sgt256(x:256, y:256) -> z:bool | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| eq256(x:256, y:256) -> z:bool | 1 if x == y, 0 otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| not256(x:256) -> z:256 | ~x, every bit of x is negated |
++---------------------------------------------------------------------------------------------------------------+
+| and256(x:256, y:256) -> z:256 | bitwise and of x and y |
++---------------------------------------------------------------------------------------------------------------+
+| or256(x:256, y:256) -> z:256 | bitwise or of x and y |
++---------------------------------------------------------------------------------------------------------------+
+| xor256(x:256, y:256) -> z:256 | bitwise xor of x and y |
++---------------------------------------------------------------------------------------------------------------+
+| shl256(x:256, y:256) -> z:256 | logical left shift of x by y |
++---------------------------------------------------------------------------------------------------------------+
+| shr256(x:256, y:256) -> z:256 | logical right shift of x by y |
++---------------------------------------------------------------------------------------------------------------+
+| sar256(x:256, y:256) -> z:256 | arithmetic right shift of x by y |
++---------------------------------------------------------------------------------------------------------------+
+| byte(n:256, x:256) -> v:256 | nth byte of x, where the most significant byte is the 0th byte |
+| Cannot this be just replaced by and256(shr256(n, x), 0xff) and let it be optimised out by the EVM backend? |
++---------------------------------------------------------------------------------------------------------------+
+| *Memory and storage* |
++---------------------------------------------------------------------------------------------------------------+
+| mload(p:256) -> v:256 | mem[p..(p+32)) |
++---------------------------------------------------------------------------------------------------------------+
+| mstore(p:256, v:256) | mem[p..(p+32)) := v |
++---------------------------------------------------------------------------------------------------------------+
+| mstore8(p:256, v:256) | mem[p] := v & 0xff - only modifies a single byte |
++---------------------------------------------------------------------------------------------------------------+
+| sload(p:256) -> v:256 | storage[p] |
++---------------------------------------------------------------------------------------------------------------+
+| sstore(p:256, v:256) | storage[p] := v |
++---------------------------------------------------------------------------------------------------------------+
+| msize() -> size:256 | size of memory, i.e. largest accessed memory index, albeit due |
+| | due to the memory extension function, which extends by words, |
+| | this will always be a multiple of 32 bytes |
++---------------------------------------------------------------------------------------------------------------+
+| *Execution control* |
++---------------------------------------------------------------------------------------------------------------+
+| create(v:256, p:256, s:256) | create new contract with code mem[p..(p+s)) and send v wei |
+| | and return the new address |
++---------------------------------------------------------------------------------------------------------------+
+| call(g:256, a:256, v:256, in:256, | call contract at address a with input mem[in..(in+insize)) |
+| insize:256, out:256, outsize:256) -> r:256 | providing g gas and v wei and output area |
+| | mem[out..(out+outsize)) returning 0 on error (eg. out of gas) |
+| | and 1 on success |
++---------------------------------------------------------------------------------------------------------------+
+| callcode(g:256, a:256, v:256, in:256, | identical to `call` but only use the code from a and stay |
+| insize:256, out:256, outsize:256) -> r:256 | in the context of the current contract otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| delegatecall(g:256, a:256, in:256, | identical to `callcode` but also keep ``caller`` |
+| insize:256, out:256, outsize:256) -> r:256 | and ``callvalue`` |
++---------------------------------------------------------------------------------------------------------------+
+| stop() | stop execution, identical to return(0,0) |
+| Perhaps it would make sense retiring this as it equals to return(0,0). It can be an optimisation by the EVM |
+| backend. |
++---------------------------------------------------------------------------------------------------------------+
+| abort() | abort (equals to invalid instruction on EVM) |
++---------------------------------------------------------------------------------------------------------------+
+| return(p:256, s:256) | end execution, return data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| revert(p:256, s:256) | end execution, revert state changes, return data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| selfdestruct(a:256) | end execution, destroy current contract and send funds to a |
++---------------------------------------------------------------------------------------------------------------+
+| log0(p:256, s:256) | log without topics and data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| log1(p:256, s:256, t1:256) | log with topic t1 and data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| log2(p:256, s:256, t1:256, t2:256) | log with topics t1, t2 and data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| log3(p:256, s:256, t1:256, t2:256, | log with topics t, t2, t3 and data mem[p..(p+s)) |
+| t3:256) | |
++---------------------------------------------------------------------------------------------------------------+
+| log4(p:256, s:256, t1:256, t2:256, | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
+| t3:256, t4:256) | |
++---------------------------------------------------------------------------------------------------------------+
+| *State queries* |
++---------------------------------------------------------------------------------------------------------------+
+| blockcoinbase() -> address:256 | current mining beneficiary |
++---------------------------------------------------------------------------------------------------------------+
+| blockdifficulty() -> difficulty:256 | difficulty of the current block |
++---------------------------------------------------------------------------------------------------------------+
+| blockgaslimit() -> limit:256 | block gas limit of the current block |
++---------------------------------------------------------------------------------------------------------------+
+| blockhash(b:256) -> hash:256 | hash of block nr b - only for last 256 blocks excluding current |
++---------------------------------------------------------------------------------------------------------------+
+| blocknumber() -> block:256 | current block number |
++---------------------------------------------------------------------------------------------------------------+
+| blocktimestamp() -> timestamp:256 | timestamp of the current block in seconds since the epoch |
++---------------------------------------------------------------------------------------------------------------+
+| txorigin() -> address:256 | transaction sender |
++---------------------------------------------------------------------------------------------------------------+
+| txgasprice() -> price:256 | gas price of the transaction |
++---------------------------------------------------------------------------------------------------------------+
+| gasleft() -> gas:256 | gas still available to execution |
++---------------------------------------------------------------------------------------------------------------+
+| balance(a:256) -> v:256 | wei balance at address a |
++---------------------------------------------------------------------------------------------------------------+
+| this() -> address:256 | address of the current contract / execution context |
++---------------------------------------------------------------------------------------------------------------+
+| caller() -> address:256 | call sender (excluding delegatecall) |
++---------------------------------------------------------------------------------------------------------------+
+| callvalue() -> v:256 | wei sent together with the current call |
++---------------------------------------------------------------------------------------------------------------+
+| calldataload(p:256) -> v:256 | call data starting from position p (32 bytes) |
++---------------------------------------------------------------------------------------------------------------+
+| calldatasize() -> v:256 | size of call data in bytes |
++---------------------------------------------------------------------------------------------------------------+
+| calldatacopy(t:256, f:256, s:256) | copy s bytes from calldata at position f to mem at position t |
++---------------------------------------------------------------------------------------------------------------+
+| codesize() -> size:256 | size of the code of the current contract / execution context |
++---------------------------------------------------------------------------------------------------------------+
+| codecopy(t:256, f:256, s:256) | copy s bytes from code at position f to mem at position t |
++---------------------------------------------------------------------------------------------------------------+
+| extcodesize(a:256) -> size:256 | size of the code at address a |
++---------------------------------------------------------------------------------------------------------------+
+| extcodecopy(a:256, t:256, f:256, s:256) | like codecopy(t, f, s) but take code at address a |
++---------------------------------------------------------------------------------------------------------------+
+| *Others* |
++---------------------------------------------------------------------------------------------------------------+
+| discard256(unused:256) | discard value |
++---------------------------------------------------------------------------------------------------------------+
+| sha3(p:256, s:256) -> v:256 | keccak(mem[p...(p+s))) |
++---------------------------------------------------------------------------------------------------------------+