aboutsummaryrefslogtreecommitdiffstats
path: root/libevmasm
diff options
context:
space:
mode:
authorchriseth <chris@ethereum.org>2018-01-18 00:56:33 +0800
committerchriseth <chris@ethereum.org>2018-02-07 05:51:30 +0800
commit491d6d3e0c131bcafc10d4bc86df0d6833955cd4 (patch)
treeac11cb1237079957ee66fca5611048ba7f723d90 /libevmasm
parentd786d652434d2010d9af4ef0bf0aa1fdb15c80e8 (diff)
downloaddexon-solidity-491d6d3e0c131bcafc10d4bc86df0d6833955cd4.tar.gz
dexon-solidity-491d6d3e0c131bcafc10d4bc86df0d6833955cd4.tar.zst
dexon-solidity-491d6d3e0c131bcafc10d4bc86df0d6833955cd4.zip
Move out the rule list.
Diffstat (limited to 'libevmasm')
-rw-r--r--libevmasm/RuleList.h214
-rw-r--r--libevmasm/SimplificationRules.cpp166
2 files changed, 217 insertions, 163 deletions
diff --git a/libevmasm/RuleList.h b/libevmasm/RuleList.h
new file mode 100644
index 00000000..d95b014d
--- /dev/null
+++ b/libevmasm/RuleList.h
@@ -0,0 +1,214 @@
+/*
+ This file is part of solidity.
+
+ solidity is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ solidity is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with solidity. If not, see <http://www.gnu.org/licenses/>.
+*/
+/**
+ * @date 2018
+ * Templatized list of simplification rules.
+ */
+
+#pragma once
+
+#include <vector>
+#include <functional>
+
+#include <libevmasm/Instruction.h>
+
+namespace dev
+{
+namespace solidity
+{
+
+template <class S> S divWorkaround(S const& _a, S const& _b)
+{
+ return (S)(bigint(_a) / bigint(_b));
+}
+
+template <class S> S modWorkaround(S const& _a, S const& _b)
+{
+ return (S)(bigint(_a) % bigint(_b));
+}
+
+/// @returns a list of simplification rules given certain match placeholders.
+/// A, B and C should represent constants, X and Y arbitrary expressions.
+/// As the simplification can remove instructions, care has to be taken if multiple
+/// non-constant expressions are used. The simplifications should not change the
+/// order of operations, though.
+template <class Pattern>
+std::vector<std::pair<Pattern, std::function<Pattern()>>> simplificationRuleList(
+ Pattern A,
+ Pattern B,
+ Pattern C,
+ Pattern X,
+ Pattern Y
+)
+{
+ std::vector<std::pair<Pattern, std::function<Pattern()>>> rules;
+ rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{
+ // arithmetics on constants
+ {{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
+ {{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
+ {{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
+ {{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
+ {{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
+ {{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
+ {{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
+ {{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
+ {{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
+ {{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }},
+ {{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
+ {{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
+ {{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
+ {{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
+ {{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
+ {{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
+ {{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
+ {{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
+ {{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
+ {{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
+ {{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
+ {{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
+ {{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
+ if (A.d() >= 31)
+ return B.d();
+ unsigned testBit = unsigned(A.d()) * 8 + 7;
+ u256 mask = (u256(1) << testBit) - 1;
+ return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
+ }},
+
+ // invariants involving known constants (commutative instructions will be checked with swapped operants too)
+ {{Instruction::ADD, {X, 0}}, [=]{ return X; }},
+ {{Instruction::SUB, {X, 0}}, [=]{ return X; }},
+ {{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
+ {{Instruction::MUL, {X, 1}}, [=]{ return X; }},
+ {{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
+ {{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
+ {{Instruction::DIV, {X, 1}}, [=]{ return X; }},
+ {{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }},
+ {{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }},
+ {{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
+ {{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
+ {{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
+ {{Instruction::OR, {X, 0}}, [=]{ return X; }},
+ {{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
+ {{Instruction::XOR, {X, 0}}, [=]{ return X; }},
+ {{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
+ {{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
+ {{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
+
+ // operations involving an expression and itself
+ {{Instruction::AND, {X, X}}, [=]{ return X; }},
+ {{Instruction::OR, {X, X}}, [=]{ return X; }},
+ {{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
+ {{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
+ {{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
+ {{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
+ {{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
+ {{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
+ {{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
+ {{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
+
+ // logical instruction combinations
+ {{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
+ {{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
+ {{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
+ {{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
+ {{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
+ {{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
+ };
+
+ // Double negation of opcodes with binary result
+ for (auto const& op: std::vector<Instruction>{
+ Instruction::EQ,
+ Instruction::LT,
+ Instruction::SLT,
+ Instruction::GT,
+ Instruction::SGT
+ })
+ rules.push_back({
+ {Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
+ [=]() -> Pattern { return {op, {X, Y}}; }
+ });
+
+ rules.push_back({
+ {Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
+ [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
+ });
+
+ rules.push_back({
+ {Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
+ [=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
+ });
+
+ // Associative operations
+ for (auto const& opFun: std::vector<std::pair<Instruction,std::function<u256(u256 const&,u256 const&)>>>{
+ {Instruction::ADD, std::plus<u256>()},
+ {Instruction::MUL, std::multiplies<u256>()},
+ {Instruction::AND, std::bit_and<u256>()},
+ {Instruction::OR, std::bit_or<u256>()},
+ {Instruction::XOR, std::bit_xor<u256>()}
+ })
+ {
+ auto op = opFun.first;
+ auto fun = opFun.second;
+ // Moving constants to the outside, order matters here!
+ // we need actions that return expressions (or patterns?) here, and we need also reversed rules
+ // (X+A)+B -> X+(A+B)
+ rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{{
+ {op, {{op, {X, A}}, B}},
+ [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
+ }, {
+ // X+(Y+A) -> (X+Y)+A
+ {op, {{op, {X, A}}, Y}},
+ [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
+ }, {
+ // For now, we still need explicit commutativity for the inner pattern
+ {op, {{op, {A, X}}, B}},
+ [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
+ }, {
+ {op, {{op, {A, X}}, Y}},
+ [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
+ }};
+ }
+
+ // move constants across subtractions
+ rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{
+ {
+ // X - A -> X + (-A)
+ {Instruction::SUB, {X, A}},
+ [=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
+ }, {
+ // (X + A) - Y -> (X - Y) + A
+ {Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
+ [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
+ }, {
+ // (A + X) - Y -> (X - Y) + A
+ {Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
+ [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
+ }, {
+ // X - (Y + A) -> (X - Y) + (-A)
+ {Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
+ [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
+ }, {
+ // X - (A + Y) -> (X - Y) + (-A)
+ {Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
+ [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
+ }
+ };
+ return rules;
+}
+
+}
+}
diff --git a/libevmasm/SimplificationRules.cpp b/libevmasm/SimplificationRules.cpp
index e6c51f95..01cad949 100644
--- a/libevmasm/SimplificationRules.cpp
+++ b/libevmasm/SimplificationRules.cpp
@@ -31,6 +31,8 @@
#include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/SimplificationRules.h>
+#include <libevmasm/RuleList.h>
+
using namespace std;
using namespace dev;
using namespace dev::eth;
@@ -64,16 +66,6 @@ void Rules::addRule(std::pair<Pattern, std::function<Pattern()> > const& _rule)
m_rules[byte(_rule.first.instruction())].push_back(_rule);
}
-template <class S> S divWorkaround(S const& _a, S const& _b)
-{
- return (S)(bigint(_a) / bigint(_b));
-}
-
-template <class S> S modWorkaround(S const& _a, S const& _b)
-{
- return (S)(bigint(_a) % bigint(_b));
-}
-
Rules::Rules()
{
// Multiple occurences of one of these inside one rule must match the same equivalence class.
@@ -84,165 +76,13 @@ Rules::Rules()
// Anything.
Pattern X;
Pattern Y;
- Pattern Z;
A.setMatchGroup(1, m_matchGroups);
B.setMatchGroup(2, m_matchGroups);
C.setMatchGroup(3, m_matchGroups);
X.setMatchGroup(4, m_matchGroups);
Y.setMatchGroup(5, m_matchGroups);
- Z.setMatchGroup(6, m_matchGroups);
-
- addRules(vector<pair<Pattern, function<Pattern()>>>{
- // arithmetics on constants
- {{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
- {{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
- {{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
- {{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
- {{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
- {{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
- {{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
- {{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
- {{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
- {{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }},
- {{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
- {{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
- {{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
- {{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
- {{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
- {{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
- {{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
- {{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
- {{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
- {{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
- {{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
- {{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
- {{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
- if (A.d() >= 31)
- return B.d();
- unsigned testBit = unsigned(A.d()) * 8 + 7;
- u256 mask = (u256(1) << testBit) - 1;
- return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
- }},
-
- // invariants involving known constants (commutative instructions will be checked with swapped operants too)
- {{Instruction::ADD, {X, 0}}, [=]{ return X; }},
- {{Instruction::SUB, {X, 0}}, [=]{ return X; }},
- {{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
- {{Instruction::MUL, {X, 1}}, [=]{ return X; }},
- {{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
- {{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
- {{Instruction::DIV, {X, 1}}, [=]{ return X; }},
- {{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }},
- {{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }},
- {{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
- {{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
- {{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
- {{Instruction::OR, {X, 0}}, [=]{ return X; }},
- {{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
- {{Instruction::XOR, {X, 0}}, [=]{ return X; }},
- {{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
- {{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
- {{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
-
- // operations involving an expression and itself
- {{Instruction::AND, {X, X}}, [=]{ return X; }},
- {{Instruction::OR, {X, X}}, [=]{ return X; }},
- {{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
- {{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
- {{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
- {{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
- {{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
- {{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
- {{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
- {{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
-
- // logical instruction combinations
- {{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
- {{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
- {{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
- {{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
- {{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
- {{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
- });
-
- // Double negation of opcodes with binary result
- for (auto const& op: vector<Instruction>{
- Instruction::EQ,
- Instruction::LT,
- Instruction::SLT,
- Instruction::GT,
- Instruction::SGT
- })
- addRule({
- {Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
- [=]() -> Pattern { return {op, {X, Y}}; }
- });
-
- addRule({
- {Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
- [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
- });
-
- addRule({
- {Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
- [=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
- });
-
- // Associative operations
- for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
- {Instruction::ADD, plus<u256>()},
- {Instruction::MUL, multiplies<u256>()},
- {Instruction::AND, bit_and<u256>()},
- {Instruction::OR, bit_or<u256>()},
- {Instruction::XOR, bit_xor<u256>()}
- })
- {
- auto op = opFun.first;
- auto fun = opFun.second;
- // Moving constants to the outside, order matters here!
- // we need actions that return expressions (or patterns?) here, and we need also reversed rules
- // (X+A)+B -> X+(A+B)
- addRules(vector<pair<Pattern, function<Pattern()>>>{{
- {op, {{op, {X, A}}, B}},
- [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
- }, {
- // X+(Y+A) -> (X+Y)+A
- {op, {{op, {X, A}}, Y}},
- [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
- }, {
- // For now, we still need explicit commutativity for the inner pattern
- {op, {{op, {A, X}}, B}},
- [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
- }, {
- {op, {{op, {A, X}}, Y}},
- [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
- }});
- }
- // move constants across subtractions
- addRules(vector<pair<Pattern, function<Pattern()>>>{
- {
- // X - A -> X + (-A)
- {Instruction::SUB, {X, A}},
- [=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
- }, {
- // (X + A) - Y -> (X - Y) + A
- {Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
- [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
- }, {
- // (A + X) - Y -> (X - Y) + A
- {Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
- [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
- }, {
- // X - (Y + A) -> (X - Y) + (-A)
- {Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
- [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
- }, {
- // X - (A + Y) -> (X - Y) + (-A)
- {Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
- [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
- }
- });
+ addRules(simplificationRuleList(A, B, C, X, Y));
}
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):