aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Changelog.md2
-rw-r--r--docs/index.rst2
-rw-r--r--docs/types.rst13
-rw-r--r--docs/yul.rst (renamed from docs/julia.rst)45
-rw-r--r--libsolidity/ast/Types.cpp26
-rw-r--r--libsolidity/codegen/ExpressionCompiler.cpp33
-rw-r--r--libsolidity/formal/SMTChecker.cpp95
-rw-r--r--libsolidity/formal/SMTChecker.h28
-rw-r--r--libsolidity/formal/VariableUsage.cpp4
-rw-r--r--libsolidity/formal/VariableUsage.h6
-rw-r--r--libsolidity/parsing/Parser.cpp9
-rw-r--r--libsolidity/parsing/Token.h1
-rwxr-xr-xtest/externalTests.sh5
-rw-r--r--test/libsolidity/SolidityEndToEndTest.cpp172
-rw-r--r--test/libsolidity/SyntaxTest.cpp13
-rw-r--r--test/tools/isoltest.cpp27
16 files changed, 281 insertions, 200 deletions
diff --git a/Changelog.md b/Changelog.md
index 7125bd30..e552521e 100644
--- a/Changelog.md
+++ b/Changelog.md
@@ -8,6 +8,8 @@ Breaking Changes:
* Commandline interface: Require ``-`` if standard input is used as source.
* General: New keywords: ``calldata``
* General: ``continue`` in a ``do...while`` loop jumps to the condition (it used to jump to the loop body). Warning: this may silently change the semantics of existing code.
+ * General: Signed right shift uses proper arithmetic shift, i.e. rounding towards negative infinity. Warning: this may silently change the semantics of existing code!
+ * Introduce ``emit`` as a keyword instead of parsing it as identifier.
* Type Checker: Disallow arithmetic operations for Boolean variables.
* Disallow trailing dots that are not followed by a number.
* Remove assembly instructions ``sha3`` and ``suicide``
diff --git a/docs/index.rst b/docs/index.rst
index 80b0d6e7..a57b93e4 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -169,7 +169,7 @@ Contents
using-the-compiler.rst
metadata.rst
abi-spec.rst
- julia.rst
+ yul.rst
style-guide.rst
common-patterns.rst
bugs.rst
diff --git a/docs/types.rst b/docs/types.rst
index 08b74241..009896d5 100644
--- a/docs/types.rst
+++ b/docs/types.rst
@@ -60,15 +60,14 @@ operators are :ref:`literals<rational_literals>` (or literal expressions).
Division by zero and modulus with zero throws a runtime exception.
The result of a shift operation is the type of the left operand. The
-expression ``x << y`` is equivalent to ``x * 2**y``, and ``x >> y`` is
-equivalent to ``x / 2**y``. This means that shifting negative numbers
-sign extends. Shifting by a negative amount throws a runtime exception.
+expression ``x << y`` is equivalent to ``x * 2**y``, and, for positive integers,
+``x >> y`` is equivalent to ``x / 2**y``. For negative ``x``, ``x >> y``
+is equivalent to dividing by a power of ``2`` while rounding down (towards negative infinity).
+Shifting by a negative amount throws a runtime exception.
.. warning::
- The results produced by shift right of negative values of signed integer types is different from those produced
- by other programming languages. In Solidity, shift right maps to division so the shifted negative values
- are going to be rounded towards zero (truncated). In other programming languages the shift right of negative values
- works like division with rounding down (towards negative infinity).
+ Before version ``0.5.0`` a right shift ``x >> y`` for negative ``x`` was equivalent to ``x / 2**y``,
+ i.e. right shifts used rounding towards zero instead of rounding towards negative infinity.
.. index:: ! ufixed, ! fixed, ! fixed point number
diff --git a/docs/julia.rst b/docs/yul.rst
index 91b91df2..4f5ef98f 100644
--- a/docs/julia.rst
+++ b/docs/yul.rst
@@ -1,18 +1,19 @@
-#################################################
-Joyfully Universal Language for (Inline) Assembly
-#################################################
+###
+Yul
+###
-.. _julia:
+.. _yul:
-.. index:: ! assembly, ! asm, ! evmasm, ! julia
+.. index:: ! assembly, ! asm, ! evmasm, ! yul, julia, iulia
-JULIA is an intermediate language that can compile to various different backends
+Yul (previously also called JULIA or IULIA) is an intermediate language that can
+compile to various different backends
(EVM 1.0, EVM 1.5 and eWASM are planned).
Because of that, it is designed to be a usable common denominator of all three
platforms.
It can already be used for "inline assembly" inside Solidity and
-future versions of the Solidity compiler will even use JULIA as intermediate
-language. It should also be easy to build high-level optimizer stages for JULIA.
+future versions of the Solidity compiler will even use Yul as intermediate
+language. It should also be easy to build high-level optimizer stages for Yul.
.. note::
@@ -21,14 +22,14 @@ language. It should also be easy to build high-level optimizer stages for JULIA.
to the EVM opcodes. Please resort to the inline assembly documentation
for details.
-The core components of JULIA are functions, blocks, variables, literals,
+The core components of Yul are functions, blocks, variables, literals,
for-loops, if-statements, switch-statements, expressions and assignments to variables.
-JULIA is typed, both variables and literals must specify the type with postfix
+Yul is typed, both variables and literals must specify the type with postfix
notation. The supported types are ``bool``, ``u8``, ``s8``, ``u32``, ``s32``,
``u64``, ``s64``, ``u128``, ``s128``, ``u256`` and ``s256``.
-JULIA in itself does not even provide operators. If the EVM is targeted,
+Yul in itself does not even provide operators. If the EVM is targeted,
opcodes will be available as built-in functions, but they can be reimplemented
if the backend changes. For a list of mandatory built-in functions, see the section below.
@@ -69,10 +70,10 @@ and ``add`` to be available.
}
}
-Specification of JULIA
-======================
+Specification of Yul
+====================
-JULIA code is described in this chapter. JULIA code is usually placed into a JULIA object, which is described in the following chapter.
+This chapter describes Yul code. It is usually placed inside a Yul object, which is described in the following chapter.
Grammar::
@@ -156,7 +157,7 @@ Literals cannot be larger than the their type. The largest type defined is 256-b
Scoping Rules
-------------
-Scopes in JULIA are tied to Blocks (exceptions are functions and the for loop
+Scopes in Yul are tied to Blocks (exceptions are functions and the for loop
as explained below) and all declarations
(``FunctionDefinition``, ``VariableDeclaration``)
introduce new identifiers into these scopes.
@@ -186,7 +187,7 @@ outside of that function.
Formal Specification
--------------------
-We formally specify JULIA by providing an evaluation function E overloaded
+We formally specify Yul by providing an evaluation function E overloaded
on the various nodes of the AST. Any functions can have side effects, so
E takes two state objects and the AST node and returns two new
state objects and a variable number of other values.
@@ -303,7 +304,7 @@ We will use a destructuring notation for the AST nodes.
Type Conversion Functions
-------------------------
-JULIA has no support for implicit type conversion and therefore functions exist to provide explicit conversion.
+Yul has no support for implicit type conversion and therefore functions exist to provide explicit conversion.
When converting a larger type to a shorter type a runtime exception can occur in case of an overflow.
Truncating conversions are supported between the following types:
@@ -507,7 +508,7 @@ The following functions must be available:
Backends
--------
-Backends or targets are the translators from JULIA to a specific bytecode. Each of the backends can expose functions
+Backends or targets are the translators from Yul to a specific bytecode. Each of the backends can expose functions
prefixed with the name of the backend. We reserve ``evm_`` and ``ewasm_`` prefixes for the two proposed backends.
Backend: EVM
@@ -525,8 +526,8 @@ Backend: eWASM
TBD
-Specification of JULIA Object
-=============================
+Specification of Yul Object
+===========================
Grammar::
@@ -537,9 +538,9 @@ Grammar::
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
-Above, ``Block`` refers to ``Block`` in the JULIA code grammar explained in the previous chapter.
+Above, ``Block`` refers to ``Block`` in the Yul code grammar explained in the previous chapter.
-An example JULIA Object is shown below:
+An example Yul Object is shown below:
.. code::
diff --git a/libsolidity/ast/Types.cpp b/libsolidity/ast/Types.cpp
index eb56e8ae..94e04b6a 100644
--- a/libsolidity/ast/Types.cpp
+++ b/libsolidity/ast/Types.cpp
@@ -678,7 +678,7 @@ string FixedPointType::toString(bool) const
bigint FixedPointType::maxIntegerValue() const
{
bigint maxValue = (bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))) - 1;
- return maxValue / pow(bigint(10), m_fractionalDigits);
+ return maxValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits);
}
bigint FixedPointType::minIntegerValue() const
@@ -686,7 +686,7 @@ bigint FixedPointType::minIntegerValue() const
if (isSigned())
{
bigint minValue = -(bigint(1) << (m_totalBits - (isSigned() ? 1 : 0)));
- return minValue / pow(bigint(10), m_fractionalDigits);
+ return minValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits);
}
else
return bigint(0);
@@ -1002,7 +1002,6 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
break;
case Token::Exp:
{
- using boost::multiprecision::pow;
if (other.isFractional())
return TypePointer();
solAssert(other.m_value.denominator() == 1, "");
@@ -1036,7 +1035,7 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
else if (_base == -1)
return 1 - 2 * int(_exponent & 1);
else
- return pow(_base, _exponent);
+ return boost::multiprecision::pow(_base, _exponent);
};
bigint numerator = optimizedPow(m_value.numerator(), absExp);
@@ -1052,7 +1051,6 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
}
case Token::SHL:
{
- using boost::multiprecision::pow;
if (fractional)
return TypePointer();
else if (other.m_value < 0)
@@ -1066,7 +1064,7 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
uint32_t exponent = other.m_value.numerator().convert_to<uint32_t>();
if (!fitsPrecisionBase2(abs(m_value.numerator()), exponent))
return TypePointer();
- value = m_value.numerator() * pow(bigint(2), exponent);
+ value = m_value.numerator() * boost::multiprecision::pow(bigint(2), exponent);
}
break;
}
@@ -1074,7 +1072,6 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
// determines the resulting type and the type of shift (SAR or SHR).
case Token::SAR:
{
- namespace mp = boost::multiprecision;
if (fractional)
return TypePointer();
else if (other.m_value < 0)
@@ -1086,10 +1083,17 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
else
{
uint32_t exponent = other.m_value.numerator().convert_to<uint32_t>();
- if (exponent > mostSignificantBit(mp::abs(m_value.numerator())))
- value = 0;
+ if (exponent > mostSignificantBit(boost::multiprecision::abs(m_value.numerator())))
+ value = m_value.numerator() < 0 ? -1 : 0;
else
- value = rational(m_value.numerator() / mp::pow(bigint(2), exponent), 1);
+ {
+ if (m_value.numerator() < 0)
+ // add 1 to the negative value before dividing to get a result that is strictly too large
+ // subtract 1 afterwards to round towards negative infinity
+ value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
+ else
+ value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
+ }
}
break;
}
@@ -1154,7 +1158,7 @@ u256 RationalNumberType::literalValue(Literal const*) const
auto fixed = fixedPointType();
solAssert(fixed, "");
int fractionalDigits = fixed->fractionalDigits();
- shiftedValue = m_value.numerator() * pow(bigint(10), fractionalDigits) / m_value.denominator();
+ shiftedValue = m_value.numerator() * boost::multiprecision::pow(bigint(10), fractionalDigits) / m_value.denominator();
}
// we ignore the literal and hope that the type was correctly determined
diff --git a/libsolidity/codegen/ExpressionCompiler.cpp b/libsolidity/codegen/ExpressionCompiler.cpp
index 93d440c8..0470c3ec 100644
--- a/libsolidity/codegen/ExpressionCompiler.cpp
+++ b/libsolidity/codegen/ExpressionCompiler.cpp
@@ -1737,11 +1737,36 @@ void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator, Type co
m_context << u256(2) << Instruction::EXP << Instruction::MUL;
break;
case Token::SAR:
- // NOTE: SAR rounds differently than SDIV
- if (m_context.evmVersion().hasBitwiseShifting() && !c_valueSigned)
- m_context << Instruction::SHR;
+ if (m_context.evmVersion().hasBitwiseShifting())
+ m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR);
else
- m_context << u256(2) << Instruction::EXP << Instruction::SWAP1 << (c_valueSigned ? Instruction::SDIV : Instruction::DIV);
+ {
+ if (c_valueSigned)
+ // In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive.
+ // Therefor xor'ing with xor_mask is the identity and the computation reduces to
+ // div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values
+ // arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results
+ // in discarding bits on the right and filling with zeros from the left).
+ // For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the
+ // right and fills in ones from the left. This is achieved as follows:
+ // If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask
+ // will flip all bits. First all bits in value_to_shift are flipped. As for the positive case,
+ // dividing by a power of two using integer arithmetic results in discarding bits to the right
+ // and filling with zeros from the left. Flipping all bits in the result again, turns all zeros
+ // on the left to ones and restores the non-discarded, shifted bits to their original value (they
+ // have now been flipped twice). In summary we now have discarded bits to the right and filled with
+ // ones from the left, i.e. we have performed an arithmetic right shift.
+ m_context.appendInlineAssembly(R"({
+ let xor_mask := sub(0, slt(value_to_shift, 0))
+ value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask)
+ })", {"value_to_shift", "shift_amount"});
+ else
+ m_context.appendInlineAssembly(R"({
+ value_to_shift := div(value_to_shift, exp(2, shift_amount))
+ })", {"value_to_shift", "shift_amount"});
+ m_context << Instruction::POP;
+
+ }
break;
case Token::SHR:
default:
diff --git a/libsolidity/formal/SMTChecker.cpp b/libsolidity/formal/SMTChecker.cpp
index 8639317b..a4d9500b 100644
--- a/libsolidity/formal/SMTChecker.cpp
+++ b/libsolidity/formal/SMTChecker.cpp
@@ -68,7 +68,7 @@ bool SMTChecker::visit(ContractDefinition const& _contract)
void SMTChecker::endVisit(ContractDefinition const&)
{
- m_stateVariables.clear();
+ m_variables.clear();
}
void SMTChecker::endVisit(VariableDeclaration const& _varDecl)
@@ -86,12 +86,10 @@ bool SMTChecker::visit(FunctionDefinition const& _function)
);
m_currentFunction = &_function;
m_interface->reset();
- m_variables.clear();
- m_variables.insert(m_stateVariables.begin(), m_stateVariables.end());
m_pathConditions.clear();
m_loopExecutionHappened = false;
- initializeLocalVariables(_function);
resetStateVariables();
+ initializeLocalVariables(_function);
return true;
}
@@ -100,6 +98,7 @@ void SMTChecker::endVisit(FunctionDefinition const&)
// TOOD we could check for "reachability", i.e. satisfiability here.
// We only handle local variables, so we clear at the beginning of the function.
// If we add storage variables, those should be cleared differently.
+ removeLocalVariables();
m_currentFunction = nullptr;
}
@@ -110,7 +109,7 @@ bool SMTChecker::visit(IfStatement const& _node)
checkBooleanNotConstant(_node.condition(), "Condition is always $VALUE.");
auto countersEndTrue = visitBranch(_node.trueStatement(), expr(_node.condition()));
- vector<Declaration const*> touchedVariables = m_variableUsage->touchedVariables(_node.trueStatement());
+ vector<VariableDeclaration const*> touchedVariables = m_variableUsage->touchedVariables(_node.trueStatement());
decltype(countersEndTrue) countersEndFalse;
if (_node.falseStatement())
{
@@ -230,10 +229,10 @@ void SMTChecker::endVisit(Assignment const& _assignment)
);
else if (Identifier const* identifier = dynamic_cast<Identifier const*>(&_assignment.leftHandSide()))
{
- Declaration const* decl = identifier->annotation().referencedDeclaration;
- if (knownVariable(*decl))
+ VariableDeclaration const& decl = dynamic_cast<VariableDeclaration const&>(*identifier->annotation().referencedDeclaration);
+ if (knownVariable(decl))
{
- assignment(*decl, _assignment.rightHandSide(), _assignment.location());
+ assignment(decl, _assignment.rightHandSide(), _assignment.location());
defineExpr(_assignment, expr(_assignment.rightHandSide()));
}
else
@@ -296,12 +295,12 @@ void SMTChecker::endVisit(UnaryOperation const& _op)
solAssert(_op.subExpression().annotation().lValueRequested, "");
if (Identifier const* identifier = dynamic_cast<Identifier const*>(&_op.subExpression()))
{
- Declaration const* decl = identifier->annotation().referencedDeclaration;
- if (knownVariable(*decl))
+ VariableDeclaration const& decl = dynamic_cast<VariableDeclaration const&>(*identifier->annotation().referencedDeclaration);
+ if (knownVariable(decl))
{
- auto innerValue = currentValue(*decl);
+ auto innerValue = currentValue(decl);
auto newValue = _op.getOperator() == Token::Inc ? innerValue + 1 : innerValue - 1;
- assignment(*decl, newValue, _op.location());
+ assignment(decl, newValue, _op.location());
defineExpr(_op, _op.isPrefixOperation() ? newValue : innerValue);
}
else
@@ -383,14 +382,15 @@ void SMTChecker::endVisit(FunctionCall const& _funCall)
void SMTChecker::endVisit(Identifier const& _identifier)
{
- Declaration const* decl = _identifier.annotation().referencedDeclaration;
- solAssert(decl, "");
if (_identifier.annotation().lValueRequested)
{
// Will be translated as part of the node that requested the lvalue.
}
else if (SSAVariable::isSupportedType(_identifier.annotation().type->category()))
- defineExpr(_identifier, currentValue(*decl));
+ {
+ VariableDeclaration const& decl = dynamic_cast<VariableDeclaration const&>(*(_identifier.annotation().referencedDeclaration));
+ defineExpr(_identifier, currentValue(decl));
+ }
else if (FunctionType const* fun = dynamic_cast<FunctionType const*>(_identifier.annotation().type.get()))
{
if (fun->kind() == FunctionType::Kind::Assert || fun->kind() == FunctionType::Kind::Require)
@@ -530,12 +530,12 @@ smt::Expression SMTChecker::division(smt::Expression _left, smt::Expression _rig
return _left / _right;
}
-void SMTChecker::assignment(Declaration const& _variable, Expression const& _value, SourceLocation const& _location)
+void SMTChecker::assignment(VariableDeclaration const& _variable, Expression const& _value, SourceLocation const& _location)
{
assignment(_variable, expr(_value), _location);
}
-void SMTChecker::assignment(Declaration const& _variable, smt::Expression const& _value, SourceLocation const& _location)
+void SMTChecker::assignment(VariableDeclaration const& _variable, smt::Expression const& _value, SourceLocation const& _location)
{
TypePointer type = _variable.type();
if (auto const* intType = dynamic_cast<IntegerType const*>(type.get()))
@@ -583,19 +583,7 @@ void SMTChecker::checkCondition(
expressionsToEvaluate.emplace_back(*_additionalValue);
expressionNames.push_back(_additionalValueName);
}
- for (auto const& param: m_currentFunction->parameters())
- if (knownVariable(*param))
- {
- expressionsToEvaluate.emplace_back(currentValue(*param));
- expressionNames.push_back(param->name());
- }
- for (auto const& var: m_currentFunction->localVariables())
- if (knownVariable(*var))
- {
- expressionsToEvaluate.emplace_back(currentValue(*var));
- expressionNames.push_back(var->name());
- }
- for (auto const& var: m_stateVariables)
+ for (auto const& var: m_variables)
if (knownVariable(*var.first))
{
expressionsToEvaluate.emplace_back(currentValue(*var.first));
@@ -740,14 +728,17 @@ void SMTChecker::initializeLocalVariables(FunctionDefinition const& _function)
void SMTChecker::resetStateVariables()
{
- for (auto const& variable: m_stateVariables)
+ for (auto const& variable: m_variables)
{
- newValue(*variable.first);
- setUnknownValue(*variable.first);
+ if (variable.first->isStateVariable())
+ {
+ newValue(*variable.first);
+ setUnknownValue(*variable.first);
+ }
}
}
-void SMTChecker::resetVariables(vector<Declaration const*> _variables)
+void SMTChecker::resetVariables(vector<VariableDeclaration const*> _variables)
{
for (auto const* decl: _variables)
{
@@ -756,9 +747,9 @@ void SMTChecker::resetVariables(vector<Declaration const*> _variables)
}
}
-void SMTChecker::mergeVariables(vector<Declaration const*> const& _variables, smt::Expression const& _condition, VariableSequenceCounters const& _countersEndTrue, VariableSequenceCounters const& _countersEndFalse)
+void SMTChecker::mergeVariables(vector<VariableDeclaration const*> const& _variables, smt::Expression const& _condition, VariableSequenceCounters const& _countersEndTrue, VariableSequenceCounters const& _countersEndFalse)
{
- set<Declaration const*> uniqueVars(_variables.begin(), _variables.end());
+ set<VariableDeclaration const*> uniqueVars(_variables.begin(), _variables.end());
for (auto const* decl: uniqueVars)
{
int trueCounter = _countersEndTrue.at(decl).index();
@@ -777,14 +768,7 @@ bool SMTChecker::createVariable(VariableDeclaration const& _varDecl)
if (SSAVariable::isSupportedType(_varDecl.type()->category()))
{
solAssert(m_variables.count(&_varDecl) == 0, "");
- solAssert(m_stateVariables.count(&_varDecl) == 0, "");
- if (_varDecl.isLocalVariable())
- m_variables.emplace(&_varDecl, SSAVariable(_varDecl, *m_interface));
- else
- {
- solAssert(_varDecl.isStateVariable(), "");
- m_stateVariables.emplace(&_varDecl, SSAVariable(_varDecl, *m_interface));
- }
+ m_variables.emplace(&_varDecl, SSAVariable(_varDecl, *m_interface));
return true;
}
else
@@ -802,37 +786,37 @@ string SMTChecker::uniqueSymbol(Expression const& _expr)
return "expr_" + to_string(_expr.id());
}
-bool SMTChecker::knownVariable(Declaration const& _decl)
+bool SMTChecker::knownVariable(VariableDeclaration const& _decl)
{
return m_variables.count(&_decl);
}
-smt::Expression SMTChecker::currentValue(Declaration const& _decl)
+smt::Expression SMTChecker::currentValue(VariableDeclaration const& _decl)
{
solAssert(knownVariable(_decl), "");
return m_variables.at(&_decl)();
}
-smt::Expression SMTChecker::valueAtSequence(Declaration const& _decl, int _sequence)
+smt::Expression SMTChecker::valueAtSequence(VariableDeclaration const& _decl, int _sequence)
{
solAssert(knownVariable(_decl), "");
return m_variables.at(&_decl)(_sequence);
}
-smt::Expression SMTChecker::newValue(Declaration const& _decl)
+smt::Expression SMTChecker::newValue(VariableDeclaration const& _decl)
{
solAssert(knownVariable(_decl), "");
++m_variables.at(&_decl);
return m_variables.at(&_decl)();
}
-void SMTChecker::setZeroValue(Declaration const& _decl)
+void SMTChecker::setZeroValue(VariableDeclaration const& _decl)
{
solAssert(knownVariable(_decl), "");
m_variables.at(&_decl).setZeroValue();
}
-void SMTChecker::setUnknownValue(Declaration const& _decl)
+void SMTChecker::setUnknownValue(VariableDeclaration const& _decl)
{
solAssert(knownVariable(_decl), "");
m_variables.at(&_decl).setUnknownValue();
@@ -909,3 +893,14 @@ void SMTChecker::addPathImpliedExpression(smt::Expression const& _e)
{
m_interface->addAssertion(smt::Expression::implies(currentPathConditions(), _e));
}
+
+void SMTChecker::removeLocalVariables()
+{
+ for (auto it = m_variables.begin(); it != m_variables.end(); )
+ {
+ if (it->first->isLocalVariable())
+ it = m_variables.erase(it);
+ else
+ ++it;
+ }
+}
diff --git a/libsolidity/formal/SMTChecker.h b/libsolidity/formal/SMTChecker.h
index 50d40ab9..6cf4e48a 100644
--- a/libsolidity/formal/SMTChecker.h
+++ b/libsolidity/formal/SMTChecker.h
@@ -76,11 +76,11 @@ private:
/// of rounding for signed division.
smt::Expression division(smt::Expression _left, smt::Expression _right, IntegerType const& _type);
- void assignment(Declaration const& _variable, Expression const& _value, SourceLocation const& _location);
- void assignment(Declaration const& _variable, smt::Expression const& _value, SourceLocation const& _location);
+ void assignment(VariableDeclaration const& _variable, Expression const& _value, SourceLocation const& _location);
+ void assignment(VariableDeclaration const& _variable, smt::Expression const& _value, SourceLocation const& _location);
/// Maps a variable to an SSA index.
- using VariableSequenceCounters = std::map<Declaration const*, SSAVariable>;
+ using VariableSequenceCounters = std::map<VariableDeclaration const*, SSAVariable>;
/// Visits the branch given by the statement, pushes and pops the current path conditions.
/// @param _condition if present, asserts that this condition is true within the branch.
@@ -114,11 +114,11 @@ private:
void initializeLocalVariables(FunctionDefinition const& _function);
void resetStateVariables();
- void resetVariables(std::vector<Declaration const*> _variables);
+ void resetVariables(std::vector<VariableDeclaration const*> _variables);
/// Given two different branches and the touched variables,
/// merge the touched variables into after-branch ite variables
/// using the branch condition as guard.
- void mergeVariables(std::vector<Declaration const*> const& _variables, smt::Expression const& _condition, VariableSequenceCounters const& _countersEndTrue, VariableSequenceCounters const& _countersEndFalse);
+ void mergeVariables(std::vector<VariableDeclaration const*> const& _variables, smt::Expression const& _condition, VariableSequenceCounters const& _countersEndTrue, VariableSequenceCounters const& _countersEndFalse);
/// Tries to create an uninitialized variable and returns true on success.
/// This fails if the type is not supported.
bool createVariable(VariableDeclaration const& _varDecl);
@@ -127,21 +127,21 @@ private:
/// @returns true if _delc is a variable that is known at the current point, i.e.
/// has a valid sequence number
- bool knownVariable(Declaration const& _decl);
+ bool knownVariable(VariableDeclaration const& _decl);
/// @returns an expression denoting the value of the variable declared in @a _decl
/// at the current point.
- smt::Expression currentValue(Declaration const& _decl);
+ smt::Expression currentValue(VariableDeclaration const& _decl);
/// @returns an expression denoting the value of the variable declared in @a _decl
/// at the given sequence point. Does not ensure that this sequence point exists.
- smt::Expression valueAtSequence(Declaration const& _decl, int _sequence);
+ smt::Expression valueAtSequence(VariableDeclaration const& _decl, int _sequence);
/// Allocates a new sequence number for the declaration, updates the current
/// sequence number to this value and returns the expression.
- smt::Expression newValue(Declaration const& _decl);
+ smt::Expression newValue(VariableDeclaration const& _decl);
/// Sets the value of the declaration to zero.
- void setZeroValue(Declaration const& _decl);
+ void setZeroValue(VariableDeclaration const& _decl);
/// Resets the variable to an unknown value (in its range).
- void setUnknownValue(Declaration const& decl);
+ void setUnknownValue(VariableDeclaration const& decl);
/// Returns the expression corresponding to the AST node. Throws if the expression does not exist.
smt::Expression expr(Expression const& _e);
@@ -161,12 +161,14 @@ private:
/// Add to the solver: the given expression implied by the current path conditions
void addPathImpliedExpression(smt::Expression const& _e);
+ /// Removes the local variables of a function.
+ void removeLocalVariables();
+
std::shared_ptr<smt::SolverInterface> m_interface;
std::shared_ptr<VariableUsage> m_variableUsage;
bool m_loopExecutionHappened = false;
std::map<Expression const*, smt::Expression> m_expressions;
- std::map<Declaration const*, SSAVariable> m_variables;
- std::map<Declaration const*, SSAVariable> m_stateVariables;
+ std::map<VariableDeclaration const*, SSAVariable> m_variables;
std::vector<smt::Expression> m_pathConditions;
ErrorReporter& m_errorReporter;
diff --git a/libsolidity/formal/VariableUsage.cpp b/libsolidity/formal/VariableUsage.cpp
index c2dea844..9282a560 100644
--- a/libsolidity/formal/VariableUsage.cpp
+++ b/libsolidity/formal/VariableUsage.cpp
@@ -50,12 +50,12 @@ VariableUsage::VariableUsage(ASTNode const& _node)
_node.accept(reducer);
}
-vector<Declaration const*> VariableUsage::touchedVariables(ASTNode const& _node) const
+vector<VariableDeclaration const*> VariableUsage::touchedVariables(ASTNode const& _node) const
{
if (!m_children.count(&_node) && !m_touchedVariable.count(&_node))
return {};
- set<Declaration const*> touched;
+ set<VariableDeclaration const*> touched;
vector<ASTNode const*> toVisit;
toVisit.push_back(&_node);
diff --git a/libsolidity/formal/VariableUsage.h b/libsolidity/formal/VariableUsage.h
index 62561cce..dda13de2 100644
--- a/libsolidity/formal/VariableUsage.h
+++ b/libsolidity/formal/VariableUsage.h
@@ -27,7 +27,7 @@ namespace solidity
{
class ASTNode;
-class Declaration;
+class VariableDeclaration;
/**
* This class collects information about which local variables of value type
@@ -38,11 +38,11 @@ class VariableUsage
public:
explicit VariableUsage(ASTNode const& _node);
- std::vector<Declaration const*> touchedVariables(ASTNode const& _node) const;
+ std::vector<VariableDeclaration const*> touchedVariables(ASTNode const& _node) const;
private:
// Variable touched by a specific AST node.
- std::map<ASTNode const*, Declaration const*> m_touchedVariable;
+ std::map<ASTNode const*, VariableDeclaration const*> m_touchedVariable;
std::map<ASTNode const*, std::vector<ASTNode const*>> m_children;
};
diff --git a/libsolidity/parsing/Parser.cpp b/libsolidity/parsing/Parser.cpp
index aec9ebbb..e9810fe3 100644
--- a/libsolidity/parsing/Parser.cpp
+++ b/libsolidity/parsing/Parser.cpp
@@ -939,10 +939,11 @@ ASTPointer<Statement> Parser::parseStatement()
}
case Token::Assembly:
return parseInlineAssembly(docString);
+ case Token::Emit:
+ statement = parseEmitStatement(docString);
+ break;
case Token::Identifier:
- if (m_scanner->currentLiteral() == "emit")
- statement = parseEmitStatement(docString);
- else if (m_insideModifier && m_scanner->currentLiteral() == "_")
+ if (m_insideModifier && m_scanner->currentLiteral() == "_")
{
statement = ASTNodeFactory(*this).createNode<PlaceholderStatement>(docString);
m_scanner->next();
@@ -1062,6 +1063,8 @@ ASTPointer<ForStatement> Parser::parseForStatement(ASTPointer<ASTString> const&
ASTPointer<EmitStatement> Parser::parseEmitStatement(ASTPointer<ASTString> const& _docString)
{
+ expectToken(Token::Emit, false);
+
ASTNodeFactory nodeFactory(*this);
m_scanner->next();
ASTNodeFactory eventCallNodeFactory(*this);
diff --git a/libsolidity/parsing/Token.h b/libsolidity/parsing/Token.h
index 4d456550..845a97bc 100644
--- a/libsolidity/parsing/Token.h
+++ b/libsolidity/parsing/Token.h
@@ -149,6 +149,7 @@ namespace solidity
K(Do, "do", 0) \
K(Else, "else", 0) \
K(Enum, "enum", 0) \
+ K(Emit, "emit", 0) \
K(Event, "event", 0) \
K(External, "external", 0) \
K(For, "for", 0) \
diff --git a/test/externalTests.sh b/test/externalTests.sh
index cd6deb75..1565d04f 100755
--- a/test/externalTests.sh
+++ b/test/externalTests.sh
@@ -56,5 +56,6 @@ function test_truffle
rm -rf "$DIR"
}
-test_truffle Gnosis https://github.com/gnosis/gnosis-contracts.git
-test_truffle Zeppelin https://github.com/OpenZeppelin/zeppelin-solidity.git
+# Using our temporary fork here. Hopefully to be merged into upstream after the 0.5.0 release.
+test_truffle Gnosis https://github.com/axic/pm-contracts.git -b solidity-050
+test_truffle Zeppelin https://github.com/axic/openzeppelin-solidity.git -b solidity-050
diff --git a/test/libsolidity/SolidityEndToEndTest.cpp b/test/libsolidity/SolidityEndToEndTest.cpp
index b53a9294..3b3cc4f7 100644
--- a/test/libsolidity/SolidityEndToEndTest.cpp
+++ b/test/libsolidity/SolidityEndToEndTest.cpp
@@ -10487,6 +10487,7 @@ BOOST_AUTO_TEST_CASE(shift_right)
ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(0x4266), u256(8)), encodeArgs(u256(0x42)));
ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(0x4266), u256(16)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(0x4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(1)<<255, u256(5)), encodeArgs(u256(1)<<250));
}
BOOST_AUTO_TEST_CASE(shift_right_garbled)
@@ -10583,16 +10584,73 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
+}
+
+BOOST_AUTO_TEST_CASE(shift_right_negative_literal)
+{
+ char const* sourceCode = R"(
+ contract C {
+ function f1() pure returns (bool) {
+ return (-4266 >> 0) == -4266;
+ }
+ function f2() pure returns (bool) {
+ return (-4266 >> 1) == -2133;
+ }
+ function f3() pure returns (bool) {
+ return (-4266 >> 4) == -267;
+ }
+ function f4() pure returns (bool) {
+ return (-4266 >> 8) == -17;
+ }
+ function f5() pure returns (bool) {
+ return (-4266 >> 16) == -1;
+ }
+ function f6() pure returns (bool) {
+ return (-4266 >> 17) == -1;
+ }
+ function g1() pure returns (bool) {
+ return (-4267 >> 0) == -4267;
+ }
+ function g2() pure returns (bool) {
+ return (-4267 >> 1) == -2134;
+ }
+ function g3() pure returns (bool) {
+ return (-4267 >> 4) == -267;
+ }
+ function g4() pure returns (bool) {
+ return (-4267 >> 8) == -17;
+ }
+ function g5() pure returns (bool) {
+ return (-4267 >> 16) == -1;
+ }
+ function g6() pure returns (bool) {
+ return (-4267 >> 17) == -1;
+ }
+ }
+ )";
+ compileAndRun(sourceCode, 0, "C");
+ ABI_CHECK(callContractFunction("f1()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f2()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f3()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f4()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f5()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f6()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g1()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g2()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g3()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g4()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g5()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g6()"), encodeArgs(true));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int8)
@@ -10607,16 +10665,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int8)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(0)), encodeArgs(u256(-66)));
ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(1)), encodeArgs(u256(-33)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(4)), encodeArgs(u256(-4)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(8)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(4)), encodeArgs(u256(-5)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(8)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(0)), encodeArgs(u256(-67)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(1)), encodeArgs(u256(-33)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(4)), encodeArgs(u256(-4)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(8)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(1)), encodeArgs(u256(-34)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(4)), encodeArgs(u256(-5)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(8)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int8)
@@ -10630,10 +10688,10 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int8)
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(0)), encodeArgs(u256(-103)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(1)), encodeArgs(u256(-51)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(2)), encodeArgs(u256(-25)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(4)), encodeArgs(u256(-6)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(8)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(1)), encodeArgs(u256(-52)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(2)), encodeArgs(u256(-26)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(4)), encodeArgs(u256(-7)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(8)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int16)
@@ -10647,10 +10705,10 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int16)
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(0)), encodeArgs(u256(-103)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(1)), encodeArgs(u256(-51)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(2)), encodeArgs(u256(-25)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(4)), encodeArgs(u256(-6)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(8)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(1)), encodeArgs(u256(-52)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(2)), encodeArgs(u256(-26)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(4)), encodeArgs(u256(-7)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(8)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int32)
@@ -10664,10 +10722,10 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int32)
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(0)), encodeArgs(u256(-103)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(1)), encodeArgs(u256(-51)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(2)), encodeArgs(u256(-25)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(4)), encodeArgs(u256(-6)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(8)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(1)), encodeArgs(u256(-52)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(2)), encodeArgs(u256(-26)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(4)), encodeArgs(u256(-7)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(8)), encodeArgs(u256(-1)));
}
@@ -10683,16 +10741,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int16)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int32)
@@ -10707,16 +10765,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int32)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_assignment)
@@ -10732,16 +10790,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_assignment)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_negative_rvalue)
diff --git a/test/libsolidity/SyntaxTest.cpp b/test/libsolidity/SyntaxTest.cpp
index 1c2355d5..430073a0 100644
--- a/test/libsolidity/SyntaxTest.cpp
+++ b/test/libsolidity/SyntaxTest.cpp
@@ -268,9 +268,16 @@ int SyntaxTest::registerTests(
[fullpath]
{
BOOST_REQUIRE_NO_THROW({
- stringstream errorStream;
- if (!SyntaxTest(fullpath.string()).run(errorStream))
- BOOST_ERROR("Test expectation mismatch.\n" + errorStream.str());
+ try
+ {
+ stringstream errorStream;
+ if (!SyntaxTest(fullpath.string()).run(errorStream))
+ BOOST_ERROR("Test expectation mismatch.\n" + errorStream.str());
+ }
+ catch (boost::exception const& _e)
+ {
+ BOOST_ERROR("Exception during syntax test: " << boost::diagnostic_information(_e));
+ }
});
},
_path.stem().string(),
diff --git a/test/tools/isoltest.cpp b/test/tools/isoltest.cpp
index 100fcbf0..d4b99e9d 100644
--- a/test/tools/isoltest.cpp
+++ b/test/tools/isoltest.cpp
@@ -150,39 +150,22 @@ SyntaxTestTool::Result SyntaxTestTool::process()
m_test = unique_ptr<SyntaxTest>(new SyntaxTest(m_path.string()));
success = m_test->run(outputMessages, " ", m_formatted);
}
- catch(CompilerError const& _e)
+ catch(boost::exception const& _e)
{
FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "Exception: " << SyntaxTest::errorMessage(_e) << endl;
- return Result::Exception;
- }
- catch(InternalCompilerError const& _e)
- {
- FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "InternalCompilerError: " << SyntaxTest::errorMessage(_e) << endl;
- return Result::Exception;
- }
- catch(FatalError const& _e)
- {
- FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "FatalError: " << SyntaxTest::errorMessage(_e) << endl;
- return Result::Exception;
- }
- catch(UnimplementedFeatureError const& _e)
- {
- FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "UnimplementedFeatureError: " << SyntaxTest::errorMessage(_e) << endl;
+ "Exception during syntax test: " << boost::diagnostic_information(_e) << endl;
return Result::Exception;
}
catch (std::exception const& _e)
{
- FormattedScope(cout, m_formatted, {BOLD, RED}) << "Exception: " << _e.what() << endl;
+ FormattedScope(cout, m_formatted, {BOLD, RED}) <<
+ "Exception during syntax test: " << _e.what() << endl;
return Result::Exception;
}
catch(...)
{
FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "Unknown Exception" << endl;
+ "Unknown exception during syntax test." << endl;
return Result::Exception;
}