diff options
Diffstat (limited to 'docs/julia.rst')
-rw-r--r-- | docs/julia.rst | 37 |
1 files changed, 18 insertions, 19 deletions
diff --git a/docs/julia.rst b/docs/julia.rst index d9b92b24..f360da0a 100644 --- a/docs/julia.rst +++ b/docs/julia.rst @@ -139,32 +139,32 @@ segment of the stack in the EVM). The the evaluation function E takes a global state, a local state and a node of the AST and returns a new global state, a new local state -and a value (if the AST node is an expression). +and a variable number of values. The number of values is equal to the +number of values of the expresison if the AST node is an expresison and +zero otherwise. -We use sequence numbers as a shorthand for the order of evaluation -and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand -for - -For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO +The exact nature of the global state is unspecified for this high level +description. The local state `L` is a mapping of identifiers `i` to values `v`, +denoted as `L[i] = v`. +The special value `⊥` is used to signify that a variable cannot be +used yet. .. code:: E(G, L, <{St1, ..., Stn}>: Block) = - let L' be a copy of L that adds a new inner scope which contains - all functions and variables declared in the block (but not its sub-blocks) - variables are marked inactive for now - TODO: more formal + let L' be an extension of L to all variables v declared in Block + (but not in its sub-blocks), such that L'[v] = ⊥. G1, L'1 = E(G, L', St1) G2, L'2 = E(G1, L'1, St2) ... Gn, L'n = E(G(n-1), L'(n-1), Stn) - let L'' be a copy of L'n where the innermost scope is removed + let L'' be a restriction of L'n to the identifiers of L' Gn, L'' E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) = G, L - E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) = - E(G, L, <(var1, ..., varn) := value>: Assignment) - E(G, L, <(var1, ..., varn) := value>: Assignment) = + E(G, L, <let var1, ..., varn := value>: VariableDeclaration) = + E(G, L, <var1, ..., varn := value>: Assignment) + E(G, L, <var1, ..., varn := value>: Assignment) = let G', L', v1, ..., vn = E(G, L, value) let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n G, L'' @@ -175,11 +175,10 @@ For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO ... G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2) Gn, Ln, v1 = E(G(n-1), L(n-1), arg1) - Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block> - be the function L[fname]. - Let L' be a copy of L that does not contain any variables in any scope, - but which has a new innermost scope such that - L'[parami] = vi and L'[reti] = 0 + Let <function fname (param1, ..., paramn) -> ret1, ..., retm block> + be the function of name fname visible at the point of the call. + Let L' be a new local state such that + L'[parami] = vi and L'[reti] = 0 for all i. Let G'', L'', rv1, ..., rvm = E(Gn, L', block) G'', Ln, rv1, ..., rvm E(G, L, l: HexLiteral) = G, L, hexString(l), |