diff options
Diffstat (limited to 'docs')
-rw-r--r-- | docs/assembly.rst | 950 | ||||
-rw-r--r-- | docs/solidity-in-depth.rst | 1 |
2 files changed, 951 insertions, 0 deletions
diff --git a/docs/assembly.rst b/docs/assembly.rst new file mode 100644 index 00000000..57c0bf9b --- /dev/null +++ b/docs/assembly.rst @@ -0,0 +1,950 @@ +################# +Solidity Assembly +################# + +.. index:: ! assembly, ! asm, ! evmasm + +Solidity defines an assembly language that can also be used without Solidity. +This assembly language can also be used as "inline assembly" inside Solidity +source code. We start with describing how to use inline assembly and how it +differs from standalone assembly and then specify assembly itself. + +TODO: Write about how scoping rules of inline assembly are a bit different +and the complications that arise when for example using internal functions +of libraries. Furhermore, write about the symbols defined by the compiler. + +Inline Assembly +=============== + +For more fine-grained control especially in order to enhance the language by writing libraries, +it is possible to interleave Solidity statements with inline assembly in a language close +to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is +often hard to address the correct stack slot and provide arguments to opcodes at the correct +point on the stack. Solidity's inline assembly tries to facilitate that and other issues +arising when writing manual assembly by the following features: + +* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul`` +* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)`` +* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }`` +* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))`` +* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }`` +* switch statements: ``switch x case 0: { y := mul(x, 2) } default: { y := 0 }`` +* function calls: ``function f(x) -> (y) { switch x case 0: { y := 1 } default: { y := mul(x, f(sub(x, 1))) } }`` + +.. note:: + Of the above, loops, function calls and switch statements are not yet implemented. + +We now want to describe the inline assembly language in detail. + +.. warning:: + Inline assembly is still a relatively new feature and might change if it does not prove useful, + so please try to keep up to date. + +Example +------- + +The following example provides library code to access the code of another contract and +load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the +idea is that assembly libraries will be used to enhance the language in such ways. + +.. code:: + + library GetCode { + function at(address _addr) returns (bytes o_code) { + assembly { + // retrieve the size of the code, this needs assembly + let size := extcodesize(_addr) + // allocate output byte array - this could also be done without assembly + // by using o_code = new bytes(size) + o_code := mload(0x40) + // new "memory end" including padding + mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f)))) + // store length in memory + mstore(o_code, size) + // actually retrieve the code, this needs assembly + extcodecopy(_addr, add(o_code, 0x20), 0, size) + } + } + } + +Inline assembly could also be beneficial in cases where the optimizer fails to produce +efficient code. Please be aware that assembly is much more difficult to write because +the compiler does not perform checks, so you should use it only if +you really know what you are doing. + +.. code:: + + library VectorSum { + // This function is less efficient because the optimizer currently fails to + // remove the bounds checks in array access. + function sumSolidity(uint[] _data) returns (uint o_sum) { + for (uint i = 0; i < _data.length; ++i) + o_sum += _data[i]; + } + + // We know that we only access the array in bounds, so we can avoid the check. + // 0x20 needs to be added to an array because the first slot contains the + // array length. + function sumAsm(uint[] _data) returns (uint o_sum) { + for (uint i = 0; i < _data.length; ++i) { + assembly { + o_sum := mload(add(add(_data, 0x20), mul(i, 0x20))) + } + } + } + } + + +Syntax +------ + +Assembly parses comments, literals and identifiers exactly as Solidity, so you can use the +usual ``//`` and ``/* */`` comments. Inline assembly is marked by ``assembly { ... }`` and inside +these curly braces, the following can be used (see the later sections for more details) + + - literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters) + - opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below + - opcode in functional style, e.g. ``add(1, mlod(0))`` + - labels, e.g. ``name:`` + - variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)`` + - identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g. ``jump(name)``, ``3 x add`` + - assignments (in "instruction style"), e.g. ``3 =: x`` + - assignments in functional style, e.g. ``x := add(y, 3)`` + - blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }`` + +Opcodes +------- + +This document does not want to be a full description of the Ethereum virtual machine, but the +following list can be used as a reference of its opcodes. + +If an opcode takes arguments (always from the top of the stack), they are given in parentheses. +Note that the order of arguments can be seed to be reversed in non-functional style (explained below). +Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are +special and all others push exactly one item onte the stack. + +In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to +(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``. + +The opcodes ``pushi`` and ``jumpdest`` cannot be used directly. + +In the grammar, opcodes are represented as pre-defined identifiers. + ++-------------------------+------+-----------------------------------------------------------------+ +| stop + `-` | stop execution, identical to return(0,0) | ++-------------------------+------+-----------------------------------------------------------------+ +| add(x, y) | | x + y | ++-------------------------+------+-----------------------------------------------------------------+ +| sub(x, y) | | x - y | ++-------------------------+------+-----------------------------------------------------------------+ +| mul(x, y) | | x * y | ++-------------------------+------+-----------------------------------------------------------------+ +| div(x, y) | | x / y | ++-------------------------+------+-----------------------------------------------------------------+ +| sdiv(x, y) | | x / y, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| mod(x, y) | | x % y | ++-------------------------+------+-----------------------------------------------------------------+ +| smod(x, y) | | x % y, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| exp(x, y) | | x to the power of y | ++-------------------------+------+-----------------------------------------------------------------+ +| not(x) | | ~x, every bit of x is negated | ++-------------------------+------+-----------------------------------------------------------------+ +| lt(x, y) | | 1 if x < y, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| gt(x, y) | | 1 if x > y, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| eq(x, y) | | 1 if x == y, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| iszero(x) | | 1 if x == 0, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| and(x, y) | | bitwise and of x and y | ++-------------------------+------+-----------------------------------------------------------------+ +| or(x, y) | | bitwise or of x and y | ++-------------------------+------+-----------------------------------------------------------------+ +| xor(x, y) | | bitwise xor of x and y | ++-------------------------+------+-----------------------------------------------------------------+ +| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte | ++-------------------------+------+-----------------------------------------------------------------+ +| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics | ++-------------------------+------+-----------------------------------------------------------------+ +| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics | ++-------------------------+------+-----------------------------------------------------------------+ +| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant | ++-------------------------+------+-----------------------------------------------------------------+ +| sha3(p, n) | | keccak(mem[p...(p+n))) | ++-------------------------+------+-----------------------------------------------------------------+ +| jump(label) | `-` | jump to label / code position | ++-------------------------+------+-----------------------------------------------------------------+ +| jumpi(label, cond) | `-` | jump to label if cond is nonzero | ++-------------------------+------+-----------------------------------------------------------------+ +| pc | | current position in code | ++-------------------------+------+-----------------------------------------------------------------+ +| pop | `*` | remove topmost stack slot | ++-------------------------+------+-----------------------------------------------------------------+ +| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) | ++-------------------------+------+-----------------------------------------------------------------+ +| swap1 ... swap16 | `*` | swap topmost and ith stack slot below it | ++-------------------------+------+-----------------------------------------------------------------+ +| mload(p) | | mem[p..(p+32)) | ++-------------------------+------+-----------------------------------------------------------------+ +| mstore(p, v) | `-` | mem[p..(p+32)) := v | ++-------------------------+------+-----------------------------------------------------------------+ +| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte | ++-------------------------+------+-----------------------------------------------------------------+ +| sload(p) | | storage[p] | ++-------------------------+------+-----------------------------------------------------------------+ +| sstore(p, v) | `-` | storage[p] := v | ++-------------------------+------+-----------------------------------------------------------------+ +| msize | | size of memory, i.e. largest accessed memory index | ++-------------------------+------+-----------------------------------------------------------------+ +| gas | | gas still available to execution | ++-------------------------+------+-----------------------------------------------------------------+ +| address | | address of the current contract / execution context | ++-------------------------+------+-----------------------------------------------------------------+ +| balance(a) | | wei balance at address a | ++-------------------------+------+-----------------------------------------------------------------+ +| caller | | call sender (excluding delegatecall) | ++-------------------------+------+-----------------------------------------------------------------+ +| callvalue | | wei sent together with the current call | ++-------------------------+------+-----------------------------------------------------------------+ +| calldataload(p) | | call data starting from position p (32 bytes) | ++-------------------------+------+-----------------------------------------------------------------+ +| calldatasize | | size of call data in bytes | ++-------------------------+------+-----------------------------------------------------------------+ +| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t | ++-------------------------+------+-----------------------------------------------------------------+ +| codesize | | size of the code of the current contract / execution context | ++-------------------------+------+-----------------------------------------------------------------+ +| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t | ++-------------------------+------+-----------------------------------------------------------------+ +| extcodesize(a) | | size of the code at address a | ++-------------------------+------+-----------------------------------------------------------------+ +| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a | ++-------------------------+------+-----------------------------------------------------------------+ +| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei | +| | | and return the new address | ++-------------------------+------+-----------------------------------------------------------------+ +| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] | +| insize, out, outsize) | | providing g gas and v wei and output area | +| | | mem[out..(out+outsize)] returting 1 on error (out of gas) | ++-------------------------+------+-----------------------------------------------------------------+ +| callcode(g, a, v, in, | | identical to call but only use the code from a and stay | +| insize, out, outsize) | | in the context of the current contract otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| delegatecall(g, a, in, | | identical to callcode but also keep ``caller`` | +| insize, out, outsize) | | and ``callvalue`` | ++-------------------------+------+-----------------------------------------------------------------+ +| return(p, s) | `*` | end execution, return data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a | ++-------------------------+------+-----------------------------------------------------------------+ +| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) | +| t4) | | | ++-------------------------+------+-----------------------------------------------------------------+ +| origin | | transaction sender | ++-------------------------+------+-----------------------------------------------------------------+ +| gasprice | | gas price of the transaction | ++-------------------------+------+-----------------------------------------------------------------+ +| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current | ++-------------------------+------+-----------------------------------------------------------------+ +| coinbase | | current mining beneficiary | ++-------------------------+------+-----------------------------------------------------------------+ +| timestamp | | timestamp of the current block in seconds since the epoch | ++-------------------------+------+-----------------------------------------------------------------+ +| number | | current block number | ++-------------------------+------+-----------------------------------------------------------------+ +| difficulty | | difficulty of the current block | ++-------------------------+------+-----------------------------------------------------------------+ +| gaslimit | | block gas limit of the current block | ++-------------------------+------+-----------------------------------------------------------------+ + +Literals +-------- + +You can use integer constants by typing them in decimal or hexadecimal notation and an +appropriate ``PUSHi`` instruction will automatically be generated. The following creates code +to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc". +Strings are stored left-aligned and cannot be longer than 32 bytes. + +.. code:: + + assembly { 2 3 add "abc" and } + +Functional Style +----------------- + +You can type opcode after opcode in the same way they will end up in bytecode. For example +adding ``3`` to the contents in memory at position ``0x80`` would be + +.. code:: + + 3 0x80 mload add 0x80 mstore + +As it is often hard to see what the actual arguments for certain opcodes are, +Solidity inline assembly also provides a "functional style" notation where the same code +would be written as follows + +.. code:: + + mstore(0x80, add(mload(0x80), 3)) + +Functional style and instructional style can be mixed, but any opcode inside a +functional style expression has to return exactly one stack slot (most of the opcodes do). + +Note that the order of arguments is reversed in functional-style as opposed to the instruction-style +way. If you use functional-style, the first argument will end up on the stack top. + + +Access to External Variables and Functions +------------------------------------------ + +Solidity variables and other identifiers can be accessed by simply using their name. +For storage and memory variables, this will push the address and not the value onto the +stack. Also note that non-struct and non-array storage variable addresses occupy two slots +on the stack: One for the address and one for the byte offset inside the storage slot. +In assignments (see below), we can even use local Solidity variables to assign to. + +Functions external to inline assembly can also be accessed: The assembly will +push their entry label (with virtual function resolution applied). The calling semantics +in solidity are: + + - the caller pushes return label, arg1, arg2, ..., argn + - the call returns with ret1, ret2, ..., retn + +This feature is still a bit cumbersome to use, because the stack offset essentially +changes during the call, and thus references to local variables will be wrong. +It is planned that the stack height changes can be specified in inline assembly. + +.. code:: + + contract C { + uint b; + function f(uint x) returns (uint r) { + assembly { + b pop // remove the offset, we know it is zero + sload + x + mul + =: r // assign to return variable r + } + } + } + +Labels +------ + +Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses +which can change easily. Solidity inline assembly provides labels to make the use of +jumps easier. The following code computes an element in the Fibonacci series. + +.. code:: + + { + let n := calldataload(4) + let a := 1 + let b := a + loop: + jumpi(loopend, eq(n, 0)) + a add swap1 + n := sub(n, 1) + jump(loop) + loopend: + mstore(0, a) + return(0, 0x20) + } + +Please note that automatically accessing stack variables can only work if the +assembler knows the current stack height. This fails to work if the jump source +and target have different stack heights. It is still fine to use such jumps, but +you should just not access any stack variables (even assembly variables) in that case. + +Furthermore, the stack height analyser goes through the code opcode by opcode +(and not according to control flow), so in the following case, the assembler +will have a wrong impression about the stack height at label ``two``: + +.. code:: + + { + jump(two) + one: + // Here the stack height is 1 (because we pushed 7), + // but the assembler thinks it is 0 because it reads + // from top to bottom. + // Accessing stack variables here will lead to errors. + jump(three) + two: + 7 // push something onto the stack + jump(one) + three: + } + + +Declaring Assembly-Local Variables +---------------------------------- + +You can use the ``let`` keyword to declare variables that are only visible in +inline assembly and actually only in the current ``{...}``-block. What happens +is that the ``let`` instruction will create a new stack slot that is reserved +for the variable and automatically removed again when the end of the block +is reached. You need to provide an initial value for the variable which can +be just ``0``, but it can also be a complex functional-style expression. + +.. code:: + + contract C { + function f(uint x) returns (uint b) { + assembly { + let v := add(x, 1) + mstore(0x80, v) + { + let y := add(sload(v), 1) + b := y + } // y is "deallocated" here + b := add(b, v) + } // v is "deallocated" here + } + } + + +Assignments +----------- + +Assignments are possible to assembly-local variables and to function-local +variables. Take care that when you assign to variables that point to +memory or storage, you will only change the pointer and not the data. + +There are two kinds of assignments: functional-style and instruction-style. +For functional-style assignments (``variable := value``), you need to provide a value in a +functional-style expression that results in exactly one stack value +and for instruction-style (``=: variable``), the value is just taken from the stack top. +For both ways, the colon points to the name of the variable. The assignment +is performed by replacing the variable's value on the stack by the new value. + +.. code:: + + assembly { + let v := 0 // functional-style assignment as part of variable declaration + let g := add(v, 2) + sload(10) + =: v // instruction style assignment, puts the result of sload(10) into v + } + +Switch +------ + +You can use a switch statement as a very basic version of "if/else". +It takes the value of an expression and compares it to several constants. +The branch corresponding to the matching constant is taken. Contrary to the +error-prone behaviour of some programming languages, control flow does +not continue from one case to the next. There can be a fallback or default +case called ``default``. + +.. code:: + + assembly { + let x := 0 + switch calldataload(4) + case 0: { + x := calldataload(0x24) + } + default: { + x := calldataload(0x44) + } + sstore(0, div(x, 2)) + } + +The list of cases does not require curly braces, but the body of a +case does require them. + +Loops +----- + +Assembly supports a simple for-style loop. For-style loops have +a header containing an initializing part, a condition and a post-iteration +part. The condition has to be a functional-style expression, while +the other two can also be blocks. If the initializing part is a block that +declares any variables, the scope of these variables is extended into the +body (including the condition and the post-iteration part). + +The following example computes the sum of an area in memory. + +.. code:: + + assembly { + let x := 0 + for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } { + x := add(x, mload(i)) + } + } + +Functions +--------- + +Assembly allows the definition of low-level functions. These take their +arguments (and a return PC) from the stack and also put the results onto the +stack. Calling a function looks the same way as executing a functional-style +opcode. + +Functions can be defined anywhere and are visible in the block they are +declared in. Inside a function, you cannot access local variables +defined outside of that function. There is no explicit ``return`` +statement. + +If you call a function that returns multiple values, you have to assign +them to a tuple using ``(a, b) := f(x)`` or ``let (a, b) := f(x)``. + +The following example implements the power function by square-and-multiply. + +.. code:: + + assembly { + function power(base, exponent) -> (result) { + switch exponent + 0: { result := 1 } + 1: { result := base } + default: { + result := power(mul(base, base), div(exponent, 2)) + switch mod(exponent, 2) + 1: { result := mul(base, result) } + } + } + } + +Things to Avoid +--------------- + +Inline assembly might have a quite high-level look, but it actually is extremely +low-level. Function calls, loops and switches are converted by simple +rewriting rules and after that, the only thing the assembler does for you is re-arranging +functional-style opcodes, managing jump labels, counting stack height for +variable access and removing stack slots for assembly-local variables when the end +of their block is reached. Especially for those two last cases, it is important +to know that the assembler only counts stack height from top to bottom, not +necessarily following control flow. Furthermore, operations like swap will only +swap the contents of the stack but not the location of variables. + +Conventions in Solidity +----------------------- + +In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits, +e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just +treat them as 256 bit numbers and the higher-order bits are only cleaned at the +point where it is necessary, i.e. just shortly before they are written to memory +or before comparisons are performed. This means that if you access such a variable +from within inline assembly, you might have to manually clean the higher order bits +first. + +Solidity manages memory in a very simple way: There is a "free memory pointer" +at position ``0x40`` in memory. If you want to allocate memory, just use the memory +from that point on and update the pointer accordingly. + +Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is +even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory +arrays are pointers to memory arrays. The length of a dynamic array is stored at the +first slot of the array and then only the array elements follow. + +.. warning:: + Statically-sized memory arrays do not have a length field, but it will be added soon + to allow better convertibility between statically- and dynamically-sized arrays, so + please do not rely on that. + + +Standalone Assembly +=================== + +The assembly language described as inline assembly above can also be used +standalone and in fact, the plan is to use it as an intermediate language +for the Solidity compiler. In this form, it tries to achieve several goals: + +1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity. +2. The translation from assembly to bytecode should contain as few "surprises" as possible. +3. Control flow should be easy to detect to help in formal verification and optimization. + +In order to achieve the first and last goal, assembly provides high-level constructs +like ``for`` loops, ``switch`` statements and function calls. It should be possible +to write assembly programs that do not make use of explicit ``SWAP``, ``DUP``, +``JUMP`` and ``JUMPI`` statements, because the first two obfuscate the data flow +and the last two obfuscate control flow. Furthermore, functional statements of +the form ``mul(add(x, y), 7)`` are preferred over pure opcode statements like +``7 y x add mul`` because in the first form, it is much easier to see which +operand is used for which opcode. + +The second goal is achieved by introducing a desugaring phase that only removes +the higher level constructs in a very regular way and still allows inspecting +the generated low-level assembly code. The only non-local operation performed +by the assembler is name lookup of user-defined identifiers (functions, variables, ...), +which follow very simple and regular scoping rules and cleanup of local variables from the stack. + +Scoping: An identifier that is declared (label, variable, function, assembly) +is only visible in the block where it was declared (including nested blocks +inside the current block). It is not legal to access local variables across +function borders, even if they would be in scope. Shadowing is allowed, but +two identifiers with the same name cannot be declared in the same block. +Local variables cannot be accessed before they were declared, but labels, +functions and assemblies can. Assemblies are special blocks that are used +for e.g. returning runtime code or creating contracts. No identifier from an +outer assembly is visible in a sub-assembly. + +If control flow passes over the end of a block, pop instructions are inserted +that match the number of local variables declared in that block, unless the +``}`` is directly preceded by an opcode that does not have a continuing control +flow path. Whenever a local variable is referenced, the code generator needs +to know its current relative position in the stack and thus it needs to +keep track of the current so-called stack height. +At the end of a block, this implicit stack height is always reduced by the number +of local variables whether ther is a continuing control flow or not. + +This means that the stack height before and after the block should be the same. +If this is not the case, a warning is issued, +unless the last instruction in the block did not have a continuing control flow path. + +Why do we use higher-level constructs like ``switch``, ``for`` and functions: + +Using ``switch``, ``for`` and functions, it should be possible to write +complex code without using ``jump`` or ``jumpi`` manually. This makes it much +easier to analyze the control flow, which allows for improved formal +verification and optimization. + +Furthermore, if manual jumps are allowed, computing the stack height is rather complicated. +The position of all local variables on the stack needs to be known, otherwise +neither references to local variables nor removing local variables automatically +from the stack at the end of a block will work properly. Because of that, +every label that is preceded by an instruction that ends or diverts control flow +should be annotated with the current stack layout. This annotation is performed +automatically during the desugaring phase. + +Example: + +We will follow an example compilation from Solidity to desugared assembly. +We consider the runtime bytecode of the following Solidity program:: + + contract C { + function f(uint x) returns (uint y) { + y = 1; + for (uint i = 0; i < x; i++) + y = 2 * y; + } + } + +The following assembly will be generated:: + + { + mstore(0x40, 0x60) // store the "free memory pointer" + // function dispatcher + switch div(calldataload(0), exp(2, 226)) + case 0xb3de648b: { + let (r) = f(calldataload(4)) + let ret := $allocate(0x20) + mstore(ret, r) + return(ret, 0x20) + } + default: { jump(invalidJumpLabel) } + // memory allocator + function $allocate(size) -> (pos) { + pos := mload(0x40) + mstore(0x40, add(pos, size)) + } + // the contract function + function f(x) -> (y) { + y := 1 + for { let i := 0 } lt(i, x) { i := add(i, 1) } { + y := mul(2, y) + } + } + } + +After the desugaring phase it looks as follows:: + + { + mstore(0x40, 0x60) + { + let $0 := div(calldataload(0), exp(2, 226)) + jumpi($case1, eq($0, 0xb3de648b)) + jump($caseDefault) + $case1: + { + // the function call - we put return label and arguments on the stack + $ret1 calldataload(4) jump($fun_f) + $ret1 [r]: // a label with a [...]-annotation resets the stack height + // to "current block + number of local variables". It also + // introduces a variable, r: + // r is at top of stack, $0 is below (from enclosing block) + $ret2 0x20 jump($fun_allocate) + $ret2 [ret]: // stack here: $0, r, ret (top) + mstore(ret, r) + return(ret, 0x20) + // although it is useless, the jump is automatically inserted, + // since the desugaring process does not analyze control-flow + jump($endswitch) + } + $caseDefault: + { + jump(invalidJumpLabel) + jump($endswitch) + } + $endswitch: + } + jump($afterFunction) + $fun_allocate: + { + $start[$retpos, size]: + // output variables live in the same scope as the arguments. + let pos := 0 + { + pos := mload(0x40) + mstore(0x40, add(pos, size)) + } + swap1 pop swap1 jump + } + $fun_f: + { + start [$retpos, x]: + let y := 0 + { + let i := 0 + $for_begin: + jumpi($for_end, iszero(lt(i, x))) + { + y := mul(2, y) + } + $for_continue: + { i := add(i, 1) } + jump($for_begin) + $for_end: + } // Here, a pop instruction is inserted for i + swap1 pop swap1 jump + } + $afterFunction: + stop + } + + +Assembly happens in four stages: + +1. Parsing +2. Desugaring (removes switch, for and functions) +3. Opcode stream generation +4. Bytecode generation + +We will specify steps one to three in a pseudo-formal way. More formal +specifications will follow. + + +Parsing / Grammar +----------------- + +The tasks of the parser are the following: + +- Turn the byte stream into a token stream, discarding C++-style comments + (a special comment exists for source references, but we will not explain it here). +- Turn the token stream into an AST according to the grammar below +- Register identifiers with the block they are defined in (annotation to the + AST node) and note from which point on, variables can be accessed. + +The assembly lexer follows the one defined by Solidity itself. + +Whitespace is used to delimit tokens and it consists of the characters +Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and +are interpreted in the same way as Whitespace. + +Grammar:: + + AssemblyBlock = '{' AssemblyItem* '}' + AssemblyItem = + Identifier | + AssemblyBlock | + FunctionalAssemblyExpression | + AssemblyLocalDefinition | + FunctionalAssemblyAssignment | + AssemblyAssignment | + LabelDefinition | + AssemblySwitch | + AssemblyFunctionDefinition | + AssemblyFor | + 'break' | 'continue' | + SubAssembly | 'dataSize' '(' Identifier ')' | + LinkerSymbol | + 'errorLabel' | 'bytecodeSize' | + NumberLiteral | StringLiteral | HexLiteral + Identifier = [a-zA-Z_$] [a-zA-Z_0-9]* + FunctionalAssemblyExpression = Identifier '(' ( AssemblyItem ( ',' AssemblyItem )* )? ')' + AssemblyLocalDefinition = 'let' IdentifierOrList ':=' FunctionalAssemblyExpression + FunctionalAssemblyAssignment = IdentifierOrList ':=' FunctionalAssemblyExpression + IdentifierOrList = Identifier | '(' IdentifierList ')' + IdentifierList = Identifier ( ',' Identifier)* + AssemblyAssignment = '=:' Identifier + LabelDefinition = Identifier ( '[' ( IdentifierList | NumberLiteral ) ']' )? ':' + AssemblySwitch = 'switch' FunctionalAssemblyExpression AssemblyCase* + ( 'default' ':' AssemblyBlock )? + AssemblyCase = 'case' FunctionalAssemblyExpression ':' AssemblyBlock + AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')' + ( '->' '(' IdentifierList ')' )? AssemblyBlock + AssemblyFor = 'for' ( AssemblyBlock | FunctionalAssemblyExpression) + FunctionalAssemblyExpression ( AssemblyBlock | FunctionalAssemblyExpression) AssemblyBlock + SubAssembly = 'assembly' Identifier AssemblyBlock + LinkerSymbol = 'linkerSymbol' '(' StringLiteral ')' + NumberLiteral = HexNumber | DecimalNumber + HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'') + StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"' + HexNumber = '0x' [0-9a-fA-F]+ + DecimalNumber = [0-9]+ + + +Desugaring +---------- + +An AST transformation removes for, switch and function constructs. The result +is still parseable by the same parser, but it will not use certain constructs. +If jumpdests are added that are only jumped to and not continued at, information +about the stack content is added, unless no local variables of outer scopes are +accessed or the stack height is the same as for the previous instruction. + +Pseudocode:: + + desugar item: AST -> AST = + match item { + AssemblyFunctionDefinition('function' name '(' arg1, ..., argn ')' '->' ( '(' ret1, ..., retm ')' body) -> + <name>: + { + $<name>_start [$retPC, $argn, ..., arg1]: + let ret1 := 0 ... let retm := 0 + { desugar(body) } + swap and pop items so that only ret1, ... retn, $retPC are left on the stack + jump + } + AssemblyFor('for' { init } condition post body) -> + { + init // cannot be its own block because we want variable scope to extend into the body + // find I such that there are no labels $forI_* + $forI_begin: + jumpi($forI_end, iszero(condition)) + { body } + $forI_continue: + { post } + jump($forI_begin) + $forI_end: + } + 'break' -> + { + // find nearest enclosing scope with label $forI_end + pop all local variables that are defined at the current point + but not at $forI_end + jump($forI_end) + } + 'continue' -> + { + // find nearest enclosing scope with label $forI_continue + pop all local variables that are defined at the current point + but not at $forI_continue + jump($forI_continue) + } + AssemblySwitch(switch condition cases ( default: defaultBlock )? ) -> + { + // find I such that there is no $switchI* label or variable + let $switchI_value := condition + for each of cases match { + case val: -> jumpi($switchI_caseJ, eq($switchI_value, val)) + } + if default block present: -> + { defaultBlock jump($switchI_end) } + for each of cases match { + case val: { body } -> $switchI_caseJ: { body jump($switchI_end) } + } + $switchI_end: + } + FunctionalAssemblyExpression( identifier(arg1, arg2, ..., argn) ) -> + { + if identifier is function <name> with n args and m ret values -> + { + // find I such that $funcallI_* does not exist + $funcallI_return argn ... arg2 arg1 jump(<name>) + if the current context is `let (id1, ..., idm) := f(...)` -> + $funcallI_return [id1, ..., idm]: + else -> + $funcallI_return[m - n - 1]: + turn the functional expression that leads to the function call + into a statement stream + } + else -> desugar(children of node) + } + default node -> + desugar(children of node) + } + +Opcode Stream Generation +------------------------ + +During opcode stream generation, we keep track of the current stack height, +so that accessing stack variables by name is possible. + +Pseudocode:: + + codegen item: AST -> opcode_stream = + match item { + AssemblyBlock({ items }) -> + join(codegen(item) for item in items) + if last generated opcode has continuing control flow: + POP for all local variables registered at the block (including variables + introduced by labels) + warn if the stack height at this point is not the same as at the start of the block + Identifier(id) -> + lookup id in the syntactic stack of blocks + match type of id + Local Variable -> + DUPi where i = 1 + stack_height - stack_height_of_identifier(id) + Label -> + // reference to be resolved during bytecode generation + PUSH<bytecode position of label> + SubAssembly -> + PUSH<bytecode position of subassembly data> + FunctionalAssemblyExpression(id ( arguments ) ) -> + join(codegen(arg) for arg in arguments.reversed()) + id (which has to be an opcode, might be a function name later) + AssemblyLocalDefinition(let (id1, ..., idn) := expr) -> + register identifiers id1, ..., idn as locals in current block at current stack height + codegen(expr) - assert that expr returns n items to the stack + FunctionalAssemblyAssignment((id1, ..., idn) := expr) -> + lookup id1, ..., idn in the syntactic stack of blocks, assert that they are variables + codegen(expr) + for j = n, ..., i: + SWAPi where i = 1 + stack_height - stack_height_of_identifier(idj) + POP + AssemblyAssignment(=: id) -> + look up id in the syntactic stack of blocks, assert that it is a variable + SWAPi where i = 1 + stack_height - stack_height_of_identifier(id) + POP + LabelDefinition(name [id1, ..., idn] :) -> + JUMPDEST + // register new variables id1, ..., idn and set the stack height to + // stack_height_at_block_start + number_of_local_variables + LabelDefinition(name [number] :) -> + JUMPDEST + // adjust stack height by +number (can be negative) + NumberLiteral(num) -> + PUSH<num interpreted as decimal and right-aligned> + HexLiteral(lit) -> + PUSH32<lit interpreted as hex and left-aligned> + StringLiteral(lit) -> + PUSH32<lit utf-8 encoded and left-aligned> + SubAssembly(assembly <name> block) -> + append codegen(block) at the end of the code + dataSize(<name>) -> + assert that <name> is a subassembly -> + PUSH32<size of code generated from subassembly <name>> + linkerSymbol(<lit>) -> + PUSH32<zeros> and append position to linker table + } diff --git a/docs/solidity-in-depth.rst b/docs/solidity-in-depth.rst index 40704698..b6217b47 100644 --- a/docs/solidity-in-depth.rst +++ b/docs/solidity-in-depth.rst @@ -16,4 +16,5 @@ If something is missing here, please contact us on units-and-global-variables.rst control-structures.rst contracts.rst + assembly.rst miscellaneous.rst |