/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Assembly.cpp * @author Gav Wood * @date 2014 */ #include "Assembly.h" #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::eth; void Assembly::append(Assembly const& _a) { auto newDeposit = m_deposit + _a.deposit(); for (AssemblyItem i: _a.m_items) { if (i.type() == Tag || i.type() == PushTag) i.setData(i.data() + m_usedTags); else if (i.type() == PushSub || i.type() == PushSubSize) i.setData(i.data() + m_usedTags); append(i); } m_deposit = newDeposit; m_usedTags += _a.m_usedTags; for (auto const& i: _a.m_data) m_data.insert(i); for (auto const& i: _a.m_strings) m_strings.insert(i); for (auto const& i: _a.m_subs) m_subs.push_back(i); assert(!_a.m_baseDeposit); assert(!_a.m_totalDeposit); } void Assembly::append(Assembly const& _a, int _deposit) { if (_deposit > _a.m_deposit) BOOST_THROW_EXCEPTION(InvalidDeposit()); else { append(_a); while (_deposit++ < _a.m_deposit) append(Instruction::POP); } } string Assembly::out() const { stringstream ret; stream(ret); return ret.str(); } unsigned Assembly::bytesRequired() const { for (unsigned br = 1;; ++br) { unsigned ret = 1; for (auto const& i: m_data) ret += i.second.size(); for (AssemblyItem const& i: m_items) ret += i.bytesRequired(br); if (dev::bytesRequired(ret) <= br) return ret; } } string Assembly::getLocationFromSources(StringMap const& _sourceCodes, SourceLocation const& _location) const { if (_location.isEmpty() || _sourceCodes.empty() || _location.start >= _location.end || _location.start < 0) return ""; auto it = _sourceCodes.find(*_location.sourceName); if (it == _sourceCodes.end()) return ""; string const& source = it->second; if (size_t(_location.start) >= source.size()) return ""; string cut = source.substr(_location.start, _location.end - _location.start); auto newLinePos = cut.find_first_of("\n"); if (newLinePos != string::npos) cut = cut.substr(0, newLinePos) + "..."; return move(cut); } ostream& Assembly::streamAsm(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const { _out << _prefix << ".code:" << endl; for (AssemblyItem const& i: m_items) { _out << _prefix; switch (i.type()) { case Operation: _out << " " << instructionInfo(i.instruction()).name << "\t" << i.getJumpTypeAsString(); break; case Push: _out << " PUSH " << i.data(); break; case PushString: _out << " PUSH \"" << m_strings.at((h256)i.data()) << "\""; break; case PushTag: _out << " PUSH [tag" << i.data() << "]"; break; case PushSub: _out << " PUSH [$" << h256(i.data()).abridged() << "]"; break; case PushSubSize: _out << " PUSH #[$" << h256(i.data()).abridged() << "]"; break; case PushProgramSize: _out << " PUSHSIZE"; break; case Tag: _out << "tag" << i.data() << ": " << endl << _prefix << " JUMPDEST"; break; case PushData: _out << " PUSH [" << hex << (unsigned)i.data() << "]"; break; default: BOOST_THROW_EXCEPTION(InvalidOpcode()); } _out << "\t\t" << getLocationFromSources(_sourceCodes, i.getLocation()) << endl; } if (!m_data.empty() || !m_subs.empty()) { _out << _prefix << ".data:" << endl; for (auto const& i: m_data) if (u256(i.first) >= m_subs.size()) _out << _prefix << " " << hex << (unsigned)(u256)i.first << ": " << toHex(i.second) << endl; for (size_t i = 0; i < m_subs.size(); ++i) { _out << _prefix << " " << hex << i << ": " << endl; m_subs[i].stream(_out, _prefix + " ", _sourceCodes); } } return _out; } Json::Value Assembly::createJsonValue(string _name, int _begin, int _end, string _value, string _jumpType) const { Json::Value value; value["name"] = _name; value["begin"] = _begin; value["end"] = _end; if (!_value.empty()) value["value"] = _value; if (!_jumpType.empty()) value["jumpType"] = _jumpType; return value; } string toStringInHex(u256 _value) { std::stringstream hexStr; hexStr << hex << _value; return hexStr.str(); } Json::Value Assembly::streamAsmJson(ostream& _out, StringMap const& _sourceCodes) const { Json::Value root; Json::Value collection(Json::arrayValue); for (AssemblyItem const& i: m_items) { switch (i.type()) { case Operation: collection.append( createJsonValue(instructionInfo(i.instruction()).name, i.getLocation().start, i.getLocation().end, i.getJumpTypeAsString())); break; case Push: collection.append( createJsonValue("PUSH", i.getLocation().start, i.getLocation().end, toStringInHex(i.data()), i.getJumpTypeAsString())); break; case PushString: collection.append( createJsonValue("PUSH tag", i.getLocation().start, i.getLocation().end, m_strings.at((h256)i.data()))); break; case PushTag: collection.append( createJsonValue("PUSH [tag]", i.getLocation().start, i.getLocation().end, toStringInHex(i.data()))); break; case PushSub: collection.append( createJsonValue("PUSH [$]", i.getLocation().start, i.getLocation().end, dev::toString(h256(i.data())))); break; case PushSubSize: collection.append( createJsonValue("PUSH #[$]", i.getLocation().start, i.getLocation().end, dev::toString(h256(i.data())))); break; case PushProgramSize: collection.append( createJsonValue("PUSHSIZE", i.getLocation().start, i.getLocation().end)); break; case Tag: { collection.append( createJsonValue("tag", i.getLocation().start, i.getLocation().end, string(i.data()))); collection.append( createJsonValue("JUMDEST", i.getLocation().start, i.getLocation().end)); } break; case PushData: { Json::Value pushData; pushData["name"] = "PUSH hex"; collection.append(createJsonValue("PUSH hex", i.getLocation().start, i.getLocation().end, toStringInHex(i.data()))); } break; default: BOOST_THROW_EXCEPTION(InvalidOpcode()); } } root[".code"] = collection; if (!m_data.empty() || !m_subs.empty()) { Json::Value data; for (auto const& i: m_data) if (u256(i.first) >= m_subs.size()) data[toStringInHex((u256)i.first)] = toHex(i.second); for (size_t i = 0; i < m_subs.size(); ++i) { std::stringstream hexStr; hexStr << hex << i; data[hexStr.str()] = m_subs[i].stream(_out, "", _sourceCodes, true); } root[".data"] = data; _out << root; } return root; } Json::Value Assembly::stream(ostream& _out, string const& _prefix, StringMap const& _sourceCodes, bool _inJsonFormat) const { if (_inJsonFormat) return streamAsmJson(_out, _sourceCodes); else { streamAsm(_out, _prefix, _sourceCodes); return Json::Value(); } } AssemblyItem const& Assembly::append(AssemblyItem const& _i) { m_deposit += _i.deposit(); m_items.push_back(_i); if (m_items.back().getLocation().isEmpty() && !m_currentSourceLocation.isEmpty()) m_items.back().setLocation(m_currentSourceLocation); return back(); } void Assembly::injectStart(AssemblyItem const& _i) { m_items.insert(m_items.begin(), _i); } inline bool matches(AssemblyItemsConstRef _a, AssemblyItemsConstRef _b) { if (_a.size() != _b.size()) return false; for (unsigned i = 0; i < _a.size(); ++i) if (!_a[i].match(_b[i])) return false; return true; } struct OptimiserChannel: public LogChannel { static const char* name() { return "OPT"; } static const int verbosity = 12; }; #define copt dev::LogOutputStream() Assembly& Assembly::optimise(bool _enable) { if (!_enable) return *this; std::vector>> rules; // jump to next instruction rules.push_back({ { PushTag, Instruction::JUMP, Tag }, [](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].data() == m[2].data()) return {m[2]}; else return m.toVector(); }}); unsigned total = 0; for (unsigned count = 1; count > 0; total += count) { copt << toString(*this); count = 0; copt << "Performing control flow analysis..."; { ControlFlowGraph cfg(m_items); AssemblyItems optItems = cfg.optimisedItems(); if (optItems.size() < m_items.size()) { copt << "Old size: " << m_items.size() << ", new size: " << optItems.size(); m_items = move(optItems); count++; } } copt << "Performing common subexpression elimination..."; for (auto iter = m_items.begin(); iter != m_items.end();) { KnownState state; CommonSubexpressionEliminator eliminator(state); auto orig = iter; iter = eliminator.feedItems(iter, m_items.end()); AssemblyItems optItems; bool shouldReplace = false; try { optItems = eliminator.getOptimizedItems(); shouldReplace = (optItems.size() < size_t(iter - orig)); } catch (StackTooDeepException const&) { // This might happen if the opcode reconstruction is not as efficient // as the hand-crafted code. } if (shouldReplace) { copt << "Old size: " << (iter - orig) << ", new size: " << optItems.size(); count++; for (auto moveIter = optItems.begin(); moveIter != optItems.end(); ++orig, ++moveIter) *orig = move(*moveIter); iter = m_items.erase(orig, iter); } } } copt << total << " optimisations done."; for (auto& sub: m_subs) sub.optimise(true); return *this; } bytes Assembly::assemble() const { bytes ret; unsigned totalBytes = bytesRequired(); vector tagPos(m_usedTags); map tagRef; multimap dataRef; vector sizeRef; ///< Pointers to code locations where the size of the program is inserted unsigned bytesPerTag = dev::bytesRequired(totalBytes); byte tagPush = (byte)Instruction::PUSH1 - 1 + bytesPerTag; for (size_t i = 0; i < m_subs.size(); ++i) m_data[u256(i)] = m_subs[i].assemble(); unsigned bytesRequiredIncludingData = bytesRequired(); unsigned bytesPerDataRef = dev::bytesRequired(bytesRequiredIncludingData); byte dataRefPush = (byte)Instruction::PUSH1 - 1 + bytesPerDataRef; ret.reserve(bytesRequiredIncludingData); // m_data must not change from here on for (AssemblyItem const& i: m_items) switch (i.type()) { case Operation: ret.push_back((byte)i.data()); break; case PushString: { ret.push_back((byte)Instruction::PUSH32); unsigned ii = 0; for (auto j: m_strings.at((h256)i.data())) if (++ii > 32) break; else ret.push_back((byte)j); while (ii++ < 32) ret.push_back(0); break; } case Push: { byte b = max(1, dev::bytesRequired(i.data())); ret.push_back((byte)Instruction::PUSH1 - 1 + b); ret.resize(ret.size() + b); bytesRef byr(&ret.back() + 1 - b, b); toBigEndian(i.data(), byr); break; } case PushTag: { ret.push_back(tagPush); tagRef[ret.size()] = (unsigned)i.data(); ret.resize(ret.size() + bytesPerTag); break; } case PushData: case PushSub: { ret.push_back(dataRefPush); dataRef.insert(make_pair((h256)i.data(), ret.size())); ret.resize(ret.size() + bytesPerDataRef); break; } case PushSubSize: { auto s = m_data[i.data()].size(); byte b = max(1, dev::bytesRequired(s)); ret.push_back((byte)Instruction::PUSH1 - 1 + b); ret.resize(ret.size() + b); bytesRef byr(&ret.back() + 1 - b, b); toBigEndian(s, byr); break; } case PushProgramSize: { ret.push_back(dataRefPush); sizeRef.push_back(ret.size()); ret.resize(ret.size() + bytesPerDataRef); break; } case Tag: tagPos[(unsigned)i.data()] = ret.size(); ret.push_back((byte)Instruction::JUMPDEST); break; default: BOOST_THROW_EXCEPTION(InvalidOpcode()); } for (auto const& i: tagRef) { bytesRef r(ret.data() + i.first, bytesPerTag); toBigEndian(tagPos[i.second], r); } if (!m_data.empty()) { ret.push_back(0); for (auto const& i: m_data) { auto its = dataRef.equal_range(i.first); if (its.first != its.second) { for (auto it = its.first; it != its.second; ++it) { bytesRef r(ret.data() + it->second, bytesPerDataRef); toBigEndian(ret.size(), r); } for (auto b: i.second) ret.push_back(b); } } } for (unsigned pos: sizeRef) { bytesRef r(ret.data() + pos, bytesPerDataRef); toBigEndian(ret.size(), r); } return ret; }