/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file crypto.cpp
* @author Alex Leverington
* @author Gav Wood
* @date 2014
* Crypto test functions.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace dev::crypto;
using namespace CryptoPP;
BOOST_AUTO_TEST_SUITE(devcrypto)
static Secp256k1 s_secp256k1;
static CryptoPP::AutoSeededRandomPool s_rng;
static CryptoPP::OID s_curveOID(CryptoPP::ASN1::secp256k1());
static CryptoPP::DL_GroupParameters_EC s_params(s_curveOID);
static CryptoPP::DL_GroupParameters_EC::EllipticCurve s_curve(s_params.GetCurve());
BOOST_AUTO_TEST_CASE(emptySHA3Types)
{
h256 emptyListSHA3(fromHex("1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"));
BOOST_REQUIRE_EQUAL(emptyListSHA3, EmptyListSHA3);
h256 emptySHA3(fromHex("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"));
BOOST_REQUIRE_EQUAL(emptySHA3, EmptySHA3);
}
BOOST_AUTO_TEST_CASE(cryptopp_patch)
{
KeyPair k = KeyPair::create();
bytes io_text;
s_secp256k1.decrypt(k.sec(), io_text);
BOOST_REQUIRE_EQUAL(io_text.size(), 0);
}
BOOST_AUTO_TEST_CASE(verify_secert)
{
h256 empty;
KeyPair kNot(empty);
BOOST_REQUIRE(!kNot.address());
KeyPair k(sha3(empty));
BOOST_REQUIRE(k.address());
}
BOOST_AUTO_TEST_CASE(common_encrypt_decrypt)
{
string message("Now is the time for all good persons to come to the aid of humanity.");
bytes m = asBytes(message);
bytesConstRef bcr(&m);
KeyPair k = KeyPair::create();
bytes cipher;
encrypt(k.pub(), bcr, cipher);
BOOST_REQUIRE(cipher != asBytes(message) && cipher.size() > 0);
bytes plain;
decrypt(k.sec(), bytesConstRef(&cipher), plain);
BOOST_REQUIRE(asString(plain) == message);
BOOST_REQUIRE(plain == asBytes(message));
}
BOOST_AUTO_TEST_CASE(cryptopp_cryptopp_secp256k1libport)
{
secp256k1_start();
// base secret
Secret secret(sha3("privacy"));
// we get ec params from signer
ECDSA::Signer signer;
// e := sha3(msg)
bytes e(fromHex("0x01"));
e.resize(32);
int tests = 2;
while (sha3(&e, &e), secret = sha3(secret.asBytes()), tests--)
{
KeyPair key(secret);
Public pkey = key.pub();
signer.AccessKey().Initialize(s_params, secretToExponent(secret));
h256 he(sha3(e));
Integer heInt(he.asBytes().data(), 32);
h256 k(crypto::kdf(secret, he));
Integer kInt(k.asBytes().data(), 32);
kInt %= s_params.GetSubgroupOrder()-1;
ECP::Point rp = s_params.ExponentiateBase(kInt);
Integer const& q = s_params.GetGroupOrder();
Integer r = s_params.ConvertElementToInteger(rp);
Integer kInv = kInt.InverseMod(q);
Integer s = (kInv * (Integer(secret.asBytes().data(), 32)*r + heInt)) % q;
BOOST_REQUIRE(!!r && !!s);
Signature sig;
sig[64] = rp.y.IsOdd() ? 1 : 0;
r.Encode(sig.data(), 32);
s.Encode(sig.data() + 32, 32);
Public p = dev::recover(sig, he);
BOOST_REQUIRE(p == pkey);
// verify w/cryptopp
BOOST_REQUIRE(s_secp256k1.verify(pkey, sig, bytesConstRef(&e)));
// verify with secp256k1lib
byte encpub[65] = {0x04};
memcpy(&encpub[1], pkey.data(), 64);
byte dersig[72];
size_t cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sig.data(), 64, DSA_P1363);
BOOST_CHECK(cssz <= 72);
BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(he.data(), sizeof(he), dersig, cssz, encpub, 65));
}
}
BOOST_AUTO_TEST_CASE(cryptopp_ecdsa_sipaseckp256k1)
{
secp256k1_start();
// cryptopp integer encoding
Integer nHex("f2ee15ea639b73fa3db9b34a245bdfa015c260c598b211bf05a1ecc4b3e3b4f2H");
Integer nB(fromHex("f2ee15ea639b73fa3db9b34a245bdfa015c260c598b211bf05a1ecc4b3e3b4f2").data(), 32);
BOOST_REQUIRE(nHex == nB);
bytes sbytes(fromHex("0xFFFF"));
Secret secret(sha3(sbytes));
KeyPair key(secret);
bytes m(1, 0xff);
int tests = 2;
while (m[0]++, tests--)
{
h256 hm(sha3(m));
Integer hInt(hm.asBytes().data(), 32);
h256 k(hm ^ key.sec());
Integer kInt(k.asBytes().data(), 32);
// raw sign w/cryptopp (doesn't pass through cryptopp hash filter)
ECDSA::Signer signer;
signer.AccessKey().Initialize(s_params, secretToExponent(key.sec()));
Integer r, s;
signer.RawSign(kInt, hInt, r, s);
// verify cryptopp raw-signature w/cryptopp
ECDSA::Verifier verifier;
verifier.AccessKey().Initialize(s_params, publicToPoint(key.pub()));
Signature sigppraw;
r.Encode(sigppraw.data(), 32);
s.Encode(sigppraw.data() + 32, 32);
BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), sigppraw.data(), 64));
// BOOST_REQUIRE(crypto::verify(key.pub(), sigppraw, bytesConstRef(&m)));
BOOST_REQUIRE(dev::verify(key.pub(), sigppraw, hm));
// sign with cryptopp, verify, recover w/sec256lib
Signature seclibsig(dev::sign(key.sec(), hm));
BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), seclibsig.data(), 64));
// BOOST_REQUIRE(crypto::verify(key.pub(), seclibsig, bytesConstRef(&m)));
BOOST_REQUIRE(dev::verify(key.pub(), seclibsig, hm));
BOOST_REQUIRE(dev::recover(seclibsig, hm) == key.pub());
// sign with cryptopp (w/hash filter?), verify with cryptopp
bytes sigppb(signer.MaxSignatureLength());
size_t ssz = signer.SignMessage(s_rng, m.data(), m.size(), sigppb.data());
Signature sigpp;
memcpy(sigpp.data(), sigppb.data(), 64);
BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), sigppb.data(), ssz));
// BOOST_REQUIRE(crypto::verify(key.pub(), sigpp, bytesConstRef(&m)));
BOOST_REQUIRE(dev::verify(key.pub(), sigpp, hm));
// sign with cryptopp and stringsource hash filter
string sigstr;
StringSource ssrc(asString(m), true, new SignerFilter(s_rng, signer, new StringSink(sigstr)));
FixedHash retsig((byte const*)sigstr.data(), Signature::ConstructFromPointer);
BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), retsig.data(), 64));
// BOOST_REQUIRE(crypto::verify(key.pub(), retsig, bytesConstRef(&m)));
BOOST_REQUIRE(dev::verify(key.pub(), retsig, hm));
/// verification w/sec256lib
// requires public key and sig in standard format
byte encpub[65] = {0x04};
memcpy(&encpub[1], key.pub().data(), 64);
byte dersig[72];
// verify sec256lib sig w/sec256lib
size_t cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, seclibsig.data(), 64, DSA_P1363);
BOOST_CHECK(cssz <= 72);
BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65));
// verify cryptopp-raw sig w/sec256lib
cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sigppraw.data(), 64, DSA_P1363);
BOOST_CHECK(cssz <= 72);
BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65));
// verify cryptopp sig w/sec256lib
cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sigppb.data(), 64, DSA_P1363);
BOOST_CHECK(cssz <= 72);
BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65));
}
}
BOOST_AUTO_TEST_CASE(sha3_norestart)
{
CryptoPP::SHA3_256 ctx;
bytes input(asBytes("test"));
ctx.Update(input.data(), 4);
CryptoPP::SHA3_256 ctxCopy(ctx);
bytes interimDigest(32);
ctx.Final(interimDigest.data());
ctx.Update(input.data(), 4);
bytes firstDigest(32);
ctx.Final(firstDigest.data());
BOOST_REQUIRE(interimDigest == firstDigest);
ctxCopy.Update(input.data(), 4);
bytes finalDigest(32);
ctxCopy.Final(interimDigest.data());
BOOST_REQUIRE(interimDigest != finalDigest);
// we can do this another way -- copy the context for final
ctxCopy.Update(input.data(), 4);
ctxCopy.Update(input.data(), 4);
CryptoPP::SHA3_256 finalCtx(ctxCopy);
bytes finalDigest2(32);
finalCtx.Final(finalDigest2.data());
BOOST_REQUIRE(finalDigest2 == interimDigest);
ctxCopy.Update(input.data(), 4);
bytes finalDigest3(32);
finalCtx.Final(finalDigest3.data());
BOOST_REQUIRE(finalDigest2 != finalDigest3);
}
BOOST_AUTO_TEST_CASE(ecies_kdf)
{
KeyPair local = KeyPair::create();
KeyPair remote = KeyPair::create();
// nonce
Secret z1;
ecdh::agree(local.sec(), remote.pub(), z1);
auto key1 = s_secp256k1.eciesKDF(z1, bytes(), 64);
bytesConstRef eKey1 = bytesConstRef(&key1).cropped(0, 32);
bytesRef mKey1 = bytesRef(&key1).cropped(32, 32);
sha3(mKey1, mKey1);
Secret z2;
ecdh::agree(remote.sec(), local.pub(), z2);
auto key2 = s_secp256k1.eciesKDF(z2, bytes(), 64);
bytesConstRef eKey2 = bytesConstRef(&key2).cropped(0, 32);
bytesRef mKey2 = bytesRef(&key2).cropped(32, 32);
sha3(mKey2, mKey2);
BOOST_REQUIRE(eKey1.toBytes() == eKey2.toBytes());
BOOST_REQUIRE(mKey1.toBytes() == mKey2.toBytes());
BOOST_REQUIRE((u256)h256(z1) > 0);
BOOST_REQUIRE(z1 == z2);
BOOST_REQUIRE(key1.size() > 0 && ((u512)h512(key1)) > 0);
BOOST_REQUIRE(key1 == key2);
}
BOOST_AUTO_TEST_CASE(ecies_standard)
{
KeyPair k = KeyPair::create();
string message("Now is the time for all good persons to come to the aid of humanity.");
string original = message;
bytes b = asBytes(message);
s_secp256k1.encryptECIES(k.pub(), b);
BOOST_REQUIRE(b != asBytes(original));
BOOST_REQUIRE(b.size() > 0 && b[0] == 0x04);
s_secp256k1.decryptECIES(k.sec(), b);
BOOST_REQUIRE(bytesConstRef(&b).cropped(0, original.size()).toBytes() == asBytes(original));
}
BOOST_AUTO_TEST_CASE(ecies_eckeypair)
{
KeyPair k = KeyPair::create();
string message("Now is the time for all good persons to come to the aid of humanity.");
string original = message;
bytes b = asBytes(message);
s_secp256k1.encrypt(k.pub(), b);
BOOST_REQUIRE(b != asBytes(original));
s_secp256k1.decrypt(k.sec(), b);
BOOST_REQUIRE(b == asBytes(original));
}
BOOST_AUTO_TEST_CASE(ecdh)
{
cnote << "Testing ecdh...";
ECDH::Domain dhLocal(s_curveOID);
SecByteBlock privLocal(dhLocal.PrivateKeyLength());
SecByteBlock pubLocal(dhLocal.PublicKeyLength());
dhLocal.GenerateKeyPair(s_rng, privLocal, pubLocal);
ECDH::Domain dhRemote(s_curveOID);
SecByteBlock privRemote(dhRemote.PrivateKeyLength());
SecByteBlock pubRemote(dhRemote.PublicKeyLength());
dhRemote.GenerateKeyPair(s_rng, privRemote, pubRemote);
assert(dhLocal.AgreedValueLength() == dhRemote.AgreedValueLength());
// local: send public to remote; remote: send public to local
// Local
SecByteBlock sharedLocal(dhLocal.AgreedValueLength());
assert(dhLocal.Agree(sharedLocal, privLocal, pubRemote));
// Remote
SecByteBlock sharedRemote(dhRemote.AgreedValueLength());
assert(dhRemote.Agree(sharedRemote, privRemote, pubLocal));
// Test
Integer ssLocal, ssRemote;
ssLocal.Decode(sharedLocal.BytePtr(), sharedLocal.SizeInBytes());
ssRemote.Decode(sharedRemote.BytePtr(), sharedRemote.SizeInBytes());
assert(ssLocal != 0);
assert(ssLocal == ssRemote);
// Now use our keys
KeyPair a = KeyPair::create();
byte puba[65] = {0x04};
memcpy(&puba[1], a.pub().data(), 64);
KeyPair b = KeyPair::create();
byte pubb[65] = {0x04};
memcpy(&pubb[1], b.pub().data(), 64);
ECDH::Domain dhA(s_curveOID);
Secret shared;
BOOST_REQUIRE(dhA.Agree(shared.data(), a.sec().data(), pubb));
BOOST_REQUIRE(shared);
}
BOOST_AUTO_TEST_CASE(ecdhe)
{
cnote << "Testing ecdhe...";
ECDHE a, b;
BOOST_CHECK_NE(a.pubkey(), b.pubkey());
ECDHE local;
ECDHE remote;
// local tx pubkey -> remote
Secret sremote;
remote.agree(local.pubkey(), sremote);
// remote tx pbukey -> local
Secret slocal;
local.agree(remote.pubkey(), slocal);
BOOST_REQUIRE(sremote);
BOOST_REQUIRE(slocal);
BOOST_REQUIRE_EQUAL(sremote, slocal);
}
BOOST_AUTO_TEST_CASE(handshakeNew)
{
// authInitiator -> E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
// authRecipient -> E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
h256 base(sha3("privacy"));
sha3(base.ref(), base.ref());
Secret nodeAsecret(base);
KeyPair nodeA(nodeAsecret);
BOOST_REQUIRE(nodeA.pub());
sha3(base.ref(), base.ref());
Secret nodeBsecret(base);
KeyPair nodeB(nodeBsecret);
BOOST_REQUIRE(nodeB.pub());
BOOST_REQUIRE_NE(nodeA.sec(), nodeB.sec());
// Initiator is Alice (nodeA)
ECDHE eA;
bytes nAbytes(fromHex("0xAAAA"));
h256 nonceA(sha3(nAbytes));
bytes auth(Signature::size + h256::size + Public::size + h256::size + 1);
Secret ssA;
{
bytesRef sig(&auth[0], Signature::size);
bytesRef hepubk(&auth[Signature::size], h256::size);
bytesRef pubk(&auth[Signature::size + h256::size], Public::size);
bytesRef nonce(&auth[Signature::size + h256::size + Public::size], h256::size);
crypto::ecdh::agree(nodeA.sec(), nodeB.pub(), ssA);
sign(eA.seckey(), ssA ^ nonceA).ref().copyTo(sig);
sha3(eA.pubkey().ref(), hepubk);
nodeA.pub().ref().copyTo(pubk);
nonceA.ref().copyTo(nonce);
auth[auth.size() - 1] = 0x0;
}
bytes authcipher;
encrypt(nodeB.pub(), &auth, authcipher);
BOOST_REQUIRE_EQUAL(authcipher.size(), 279);
// Receipient is Bob (nodeB)
ECDHE eB;
bytes nBbytes(fromHex("0xBBBB"));
h256 nonceB(sha3(nAbytes));
bytes ack(Public::size + h256::size + 1);
{
// todo: replace nodeA.pub() in encrypt()
// decrypt public key from auth
bytes authdecrypted;
decrypt(nodeB.sec(), &authcipher, authdecrypted);
Public node;
bytesConstRef pubk(&authdecrypted[Signature::size + h256::size], Public::size);
pubk.copyTo(node.ref());
bytesRef epubk(&ack[0], Public::size);
bytesRef nonce(&ack[Public::size], h256::size);
eB.pubkey().ref().copyTo(epubk);
nonceB.ref().copyTo(nonce);
auth[auth.size() - 1] = 0x0;
}
bytes ackcipher;
encrypt(nodeA.pub(), &ack, ackcipher);
BOOST_REQUIRE_EQUAL(ackcipher.size(), 182);
BOOST_REQUIRE(eA.pubkey());
BOOST_REQUIRE(eB.pubkey());
BOOST_REQUIRE_NE(eA.seckey(), eB.seckey());
/// Alice (after receiving ack)
Secret aEncryptK;
Secret aMacK;
Secret aEgressMac;
Secret aIngressMac;
{
bytes ackdecrypted;
decrypt(nodeA.sec(), &ackcipher, ackdecrypted);
BOOST_REQUIRE(ackdecrypted.size());
bytesConstRef ackRef(&ackdecrypted);
Public eBAck;
h256 nonceBAck;
ackRef.cropped(0, Public::size).copyTo(bytesRef(eBAck.data(), Public::size));
ackRef.cropped(Public::size, h256::size).copyTo(nonceBAck.ref());
BOOST_REQUIRE_EQUAL(eBAck, eB.pubkey());
BOOST_REQUIRE_EQUAL(nonceBAck, nonceB);
// TODO: export ess and require equal to b
bytes keyMaterialBytes(512);
bytesRef keyMaterial(&keyMaterialBytes);
h256 ess;
// todo: ecdh-agree should be able to output bytes
eA.agree(eBAck, ess);
ess.ref().copyTo(keyMaterial.cropped(0, h256::size));
ssA.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
// auto token = sha3(ssA);
aEncryptK = sha3(keyMaterial);
aEncryptK.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
aMacK = sha3(keyMaterial);
keyMaterialBytes.resize(h256::size + authcipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
(aMacK ^ nonceBAck).ref().copyTo(keyMaterial);
bytesConstRef(&authcipher).copyTo(keyMaterial.cropped(h256::size, authcipher.size()));
aEgressMac = sha3(keyMaterial);
keyMaterialBytes.resize(h256::size + ackcipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
(aMacK ^ nonceA).ref().copyTo(keyMaterial);
bytesConstRef(&ackcipher).copyTo(keyMaterial.cropped(h256::size, ackcipher.size()));
aIngressMac = sha3(keyMaterial);
}
/// Bob (after sending ack)
Secret ssB;
crypto::ecdh::agree(nodeB.sec(), nodeA.pub(), ssB);
BOOST_REQUIRE_EQUAL(ssA, ssB);
Secret bEncryptK;
Secret bMacK;
Secret bEgressMac;
Secret bIngressMac;
{
bytes authdecrypted;
decrypt(nodeB.sec(), &authcipher, authdecrypted);
BOOST_REQUIRE(authdecrypted.size());
bytesConstRef ackRef(&authdecrypted);
Signature sigAuth;
h256 heA;
Public eAAuth;
Public nodeAAuth;
h256 nonceAAuth;
bytesConstRef sig(&authdecrypted[0], Signature::size);
bytesConstRef hepubk(&authdecrypted[Signature::size], h256::size);
bytesConstRef pubk(&authdecrypted[Signature::size + h256::size], Public::size);
bytesConstRef nonce(&authdecrypted[Signature::size + h256::size + Public::size], h256::size);
nonce.copyTo(nonceAAuth.ref());
pubk.copyTo(nodeAAuth.ref());
BOOST_REQUIRE(nonceAAuth);
BOOST_REQUIRE_EQUAL(nonceA, nonceAAuth);
BOOST_REQUIRE(nodeAAuth);
BOOST_REQUIRE_EQUAL(nodeA.pub(), nodeAAuth); // bad test, bad!!!
hepubk.copyTo(heA.ref());
sig.copyTo(sigAuth.ref());
Secret ss;
s_secp256k1.agree(nodeB.sec(), nodeAAuth, ss);
eAAuth = recover(sigAuth, ss ^ nonceAAuth);
// todo: test when this fails; means remote is bad or packet bits were flipped
BOOST_REQUIRE_EQUAL(heA, sha3(eAAuth));
BOOST_REQUIRE_EQUAL(eAAuth, eA.pubkey());
bytes keyMaterialBytes(512);
bytesRef keyMaterial(&keyMaterialBytes);
h256 ess;
// todo: ecdh-agree should be able to output bytes
eB.agree(eAAuth, ess);
// s_secp256k1.agree(eB.seckey(), eAAuth, ess);
ess.ref().copyTo(keyMaterial.cropped(0, h256::size));
ssB.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
// auto token = sha3(ssA);
bEncryptK = sha3(keyMaterial);
bEncryptK.ref().copyTo(keyMaterial.cropped(h256::size, h256::size));
bMacK = sha3(keyMaterial);
// todo: replace nonceB with decrypted nonceB
keyMaterialBytes.resize(h256::size + ackcipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
(bMacK ^ nonceAAuth).ref().copyTo(keyMaterial);
bytesConstRef(&ackcipher).copyTo(keyMaterial.cropped(h256::size, ackcipher.size()));
bEgressMac = sha3(keyMaterial);
keyMaterialBytes.resize(h256::size + authcipher.size());
keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size());
(bMacK ^ nonceB).ref().copyTo(keyMaterial);
bytesConstRef(&authcipher).copyTo(keyMaterial.cropped(h256::size, authcipher.size()));
bIngressMac = sha3(keyMaterial);
}
BOOST_REQUIRE_EQUAL(aEncryptK, bEncryptK);
BOOST_REQUIRE_EQUAL(aMacK, bMacK);
BOOST_REQUIRE_EQUAL(aEgressMac, bIngressMac);
BOOST_REQUIRE_EQUAL(bEgressMac, aIngressMac);
}
BOOST_AUTO_TEST_CASE(ecies_aes128_ctr_unaligned)
{
Secret encryptK(sha3("..."));
h256 egressMac(sha3("+++"));
// TESTING: send encrypt magic sequence
bytes magic {0x22,0x40,0x08,0x91};
bytes magicCipherAndMac;
encryptSymNoAuth(encryptK, &magic, magicCipherAndMac, h128());
magicCipherAndMac.resize(magicCipherAndMac.size() + 32);
sha3mac(egressMac.ref(), &magic, egressMac.ref());
egressMac.ref().copyTo(bytesRef(&magicCipherAndMac).cropped(magicCipherAndMac.size() - 32, 32));
bytes plaintext;
bytesConstRef cipher(&magicCipherAndMac[0], magicCipherAndMac.size() - 32);
decryptSymNoAuth(encryptK, h128(), cipher, plaintext);
plaintext.resize(magic.size());
BOOST_REQUIRE(plaintext.size() > 0);
BOOST_REQUIRE(magic == plaintext);
}
BOOST_AUTO_TEST_CASE(ecies_aes128_ctr)
{
Secret k(sha3("0xAAAA"));
string m = "AAAAAAAAAAAAAAAA";
bytesConstRef msg((byte*)m.data(), m.size());
bytes ciphertext;
auto iv = encryptSymNoAuth(k, msg, ciphertext);
bytes plaintext;
decryptSymNoAuth(k, iv, &ciphertext, plaintext);
BOOST_REQUIRE_EQUAL(asString(plaintext), m);
}
BOOST_AUTO_TEST_CASE(cryptopp_aes128_ctr)
{
const int aesKeyLen = 16;
BOOST_REQUIRE(sizeof(char) == sizeof(byte));
// generate test key
AutoSeededRandomPool rng;
SecByteBlock key(0x00, aesKeyLen);
rng.GenerateBlock(key, key.size());
// cryptopp uses IV as nonce/counter which is same as using nonce w/0 ctr
FixedHash ctr;
rng.GenerateBlock(ctr.data(), sizeof(ctr));
// used for decrypt
FixedHash ctrcopy(ctr);
string text = "Now is the time for all good persons to come to the aid of humanity.";
unsigned char const* in = (unsigned char*)&text[0];
unsigned char* out = (unsigned char*)&text[0];
string original = text;
string doublespeak = text + text;
string cipherCopy;
try
{
CTR_Mode::Encryption e;
e.SetKeyWithIV(key, key.size(), ctr.data());
// 68 % 255 should be difference of counter
e.ProcessData(out, in, text.size());
ctr = h128(u128(ctr) + text.size() / 16);
BOOST_REQUIRE(text != original);
cipherCopy = text;
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
}
try
{
CTR_Mode< AES >::Decryption d;
d.SetKeyWithIV(key, key.size(), ctrcopy.data());
d.ProcessData(out, in, text.size());
BOOST_REQUIRE(text == original);
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
}
// reencrypt ciphertext...
try
{
BOOST_REQUIRE(cipherCopy != text);
in = (unsigned char*)&cipherCopy[0];
out = (unsigned char*)&cipherCopy[0];
CTR_Mode::Encryption e;
e.SetKeyWithIV(key, key.size(), ctrcopy.data());
e.ProcessData(out, in, text.size());
// yep, ctr mode.
BOOST_REQUIRE(cipherCopy == original);
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
}
}
BOOST_AUTO_TEST_CASE(cryptopp_aes128_cbc)
{
const int aesKeyLen = 16;
BOOST_REQUIRE(sizeof(char) == sizeof(byte));
AutoSeededRandomPool rng;
SecByteBlock key(0x00, aesKeyLen);
rng.GenerateBlock(key, key.size());
// Generate random IV
byte iv[AES::BLOCKSIZE];
rng.GenerateBlock(iv, AES::BLOCKSIZE);
string string128("AAAAAAAAAAAAAAAA");
string plainOriginal = string128;
CryptoPP::CBC_Mode::Encryption cbcEncryption(key, key.size(), iv);
cbcEncryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size());
BOOST_REQUIRE(string128 != plainOriginal);
CBC_Mode::Decryption cbcDecryption(key, key.size(), iv);
cbcDecryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size());
BOOST_REQUIRE(plainOriginal == string128);
// plaintext whose size isn't divisible by block size must use stream filter for padding
string string192("AAAAAAAAAAAAAAAABBBBBBBB");
plainOriginal = string192;
string cipher;
StreamTransformationFilter* aesStream = new StreamTransformationFilter(cbcEncryption, new StringSink(cipher));
StringSource source(string192, true, aesStream);
BOOST_REQUIRE(cipher.size() == 32);
cbcDecryption.ProcessData((byte*)&cipher[0], (byte*)&string192[0], cipher.size());
BOOST_REQUIRE(string192 == plainOriginal);
}
BOOST_AUTO_TEST_CASE(eth_keypairs)
{
cnote << "Testing Crypto...";
secp256k1_start();
KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4")));
BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f")));
BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075")));
{
eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret());
auto rlp = t.rlp(eth::WithoutSignature);
cnote << RLP(rlp);
cnote << toHex(rlp);
cnote << t.sha3(eth::WithoutSignature);
rlp = t.rlp(eth::WithSignature);
cnote << RLP(rlp);
cnote << toHex(rlp);
cnote << t.sha3(eth::WithSignature);
BOOST_REQUIRE(t.sender() == p.address());
}
}
int cryptoTest()
{
cnote << "Testing Crypto...";
secp256k1_start();
KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4")));
BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f")));
BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075")));
{
eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret());
auto rlp = t.rlp(eth::WithoutSignature);
cnote << RLP(rlp);
cnote << toHex(rlp);
cnote << t.sha3(eth::WithoutSignature);
rlp = t.rlp(eth::WithSignature);
cnote << RLP(rlp);
cnote << toHex(rlp);
cnote << t.sha3(eth::WithSignature);
assert(t.sender() == p.address());
}
#if 0
// Test transaction.
bytes tx = fromHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d");
cout << "TX: " << RLP(tx) << endl;
Transaction t2(tx);
cout << "SENDER: " << hex << t2.sender() << dec << endl;
secp256k1_start();
Transaction t;
t.nonce = 0;
t.value = 1; // 1 wei.
t.type = eth::Transaction::MessageCall;
t.receiveAddress = toAddress(sha3("123"));
bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s);
cout << "SIG: " << sig64.size() << " " << toHex(sig64) << " " << t.vrs.v << endl;
auto msg = t.rlp(false);
cout << "TX w/o SIG: " << RLP(msg) << endl;
cout << "RLP(TX w/o SIG): " << toHex(t.rlp(false)) << endl;
std::string hmsg = sha3(t.rlp(false), false);
cout << "SHA256(RLP(TX w/o SIG)): 0x" << toHex(hmsg) << endl;
bytes privkey = sha3Bytes("123");
{
bytes pubkey(65);
int pubkeylen = 65;
int ret = secp256k1_ecdsa_seckey_verify(privkey.data());
cout << "SEC: " << dec << ret << " " << toHex(privkey) << endl;
ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1);
pubkey.resize(pubkeylen);
int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), (int)pubkey.size());
cout << "PUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << (good ? " GOOD" : " BAD") << endl;
}
// Test roundtrip...
{
bytes sig(64);
u256 nonce = 0;
int v = 0;
cout << toHex(hmsg) << endl;
cout << toHex(privkey) << endl;
cout << hex << nonce << dec << endl;
int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), (int)hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v);
cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << toHex(sig) << " " << v << endl;
bytes pubkey(65);
int pubkeylen = 65;
ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v);
pubkey.resize(pubkeylen);
cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl;
}
{
bytes pubkey(65);
int pubkeylen = 65;
int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27);
pubkey.resize(pubkeylen);
cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl;
cout << "SENDER: " << hex << toAddress(dev::sha3(bytesConstRef(&pubkey).cropped(1))) << dec << endl;
}
#endif
return 0;
}
BOOST_AUTO_TEST_SUITE_END()