#pragma once #include #include #include #include #include #ifdef __INTEL_COMPILER #pragma warning(disable:597) // will not be called for implicit or explicit conversions #endif namespace dev { /** * A modifiable reference to an existing object or vector in memory. */ template class vector_ref { public: using value_type = _T; using element_type = _T; using mutable_value_type = typename std::conditional::value, typename std::remove_const<_T>::type, _T>::type; static_assert(std::is_pod::value, "vector_ref can only be used with PODs due to its low-level treatment of data."); vector_ref(): m_data(nullptr), m_count(0) {} /// Creates a new vector_ref to point to @a _count elements starting at @a _data. vector_ref(_T* _data, size_t _count): m_data(_data), m_count(_count) {} /// Creates a new vector_ref pointing to the data part of a string (given as pointer). vector_ref(typename std::conditional::value, std::string const*, std::string*>::type _data): m_data(reinterpret_cast<_T*>(_data->data())), m_count(_data->size() / sizeof(_T)) {} /// Creates a new vector_ref pointing to the data part of a vector (given as pointer). vector_ref(typename std::conditional::value, std::vector::type> const*, std::vector<_T>*>::type _data): m_data(_data->data()), m_count(_data->size()) {} /// Creates a new vector_ref pointing to the data part of a string (given as reference). vector_ref(typename std::conditional::value, std::string const&, std::string&>::type _data): m_data(reinterpret_cast<_T*>(_data.data())), m_count(_data.size() / sizeof(_T)) {} #if DEV_LDB vector_ref(ldb::Slice const& _s): m_data(reinterpret_cast<_T*>(_s.data())), m_count(_s.size() / sizeof(_T)) {} #endif explicit operator bool() const { return m_data && m_count; } bool contentsEqual(std::vector const& _c) const { if (!m_data || m_count == 0) return _c.empty(); else return _c.size() == m_count && !memcmp(_c.data(), m_data, m_count * sizeof(_T)); } std::vector toVector() const { return std::vector(m_data, m_data + m_count); } std::vector toBytes() const { return std::vector(reinterpret_cast(m_data), reinterpret_cast(m_data) + m_count * sizeof(_T)); } std::string toString() const { return std::string((char const*)m_data, ((char const*)m_data) + m_count * sizeof(_T)); } template explicit operator vector_ref<_T2>() const { assert(m_count * sizeof(_T) / sizeof(_T2) * sizeof(_T2) / sizeof(_T) == m_count); return vector_ref<_T2>(reinterpret_cast<_T2*>(m_data), m_count * sizeof(_T) / sizeof(_T2)); } operator vector_ref<_T const>() const { return vector_ref<_T const>(m_data, m_count); } _T* data() const { return m_data; } /// @returns the number of elements referenced (not necessarily number of bytes). size_t count() const { return m_count; } /// @returns the number of elements referenced (not necessarily number of bytes). size_t size() const { return m_count; } bool empty() const { return !m_count; } /// @returns a new vector_ref pointing at the next chunk of @a size() elements. vector_ref<_T> next() const { if (!m_data) return *this; else return vector_ref<_T>(m_data + m_count, m_count); } /// @returns a new vector_ref which is a shifted and shortened view of the original data. /// If this goes out of bounds in any way, returns an empty vector_ref. /// If @a _count is ~size_t(0), extends the view to the end of the data. vector_ref<_T> cropped(size_t _begin, size_t _count) const { if (m_data && _begin <= m_count && _count <= m_count && _begin + _count <= m_count) return vector_ref<_T>(m_data + _begin, _count == ~size_t(0) ? m_count - _begin : _count); else return vector_ref<_T>(); } /// @returns a new vector_ref which is a shifted view of the original data (not going beyond it). vector_ref<_T> cropped(size_t _begin) const { if (m_data && _begin <= m_count) return vector_ref<_T>(m_data + _begin, m_count - _begin); else return vector_ref<_T>(); } void retarget(_T* _d, size_t _s) { m_data = _d; m_count = _s; } void retarget(std::vector<_T> const& _t) { m_data = _t.data(); m_count = _t.size(); } template bool overlapsWith(vector_ref _t) const { void const* f1 = data(); void const* t1 = data() + size(); void const* f2 = _t.data(); void const* t2 = _t.data() + _t.size(); return f1 < t2 && t1 > f2; } /// Copies the contents of this vector_ref to the contents of @a _t, up to the max size of @a _t. void copyTo(vector_ref::type> _t) const { if (overlapsWith(_t)) memmove(_t.data(), m_data, std::min(_t.size(), m_count) * sizeof(_T)); else memcpy(_t.data(), m_data, std::min(_t.size(), m_count) * sizeof(_T)); } /// Copies the contents of this vector_ref to the contents of @a _t, and zeros further trailing elements in @a _t. void populate(vector_ref::type> _t) const { copyTo(_t); memset(_t.data() + m_count, 0, std::max(_t.size(), m_count) - m_count); } /// Securely overwrite the memory. /// @note adapted from OpenSSL's implementation. void cleanse() { static unsigned char s_cleanseCounter = 0; uint8_t* p = (uint8_t*)begin(); size_t const len = (uint8_t*)end() - p; size_t loop = len; size_t count = s_cleanseCounter; while (loop--) { *(p++) = (uint8_t)count; count += (17 + ((size_t)p & 0xf)); } p = (uint8_t*)memchr((uint8_t*)begin(), (uint8_t)count, len); if (p) count += (63 + (size_t)p); s_cleanseCounter = (uint8_t)count; memset((uint8_t*)begin(), 0, len); } _T* begin() { return m_data; } _T* end() { return m_data + m_count; } _T const* begin() const { return m_data; } _T const* end() const { return m_data + m_count; } _T& operator[](size_t _i) { assert(m_data); assert(_i < m_count); return m_data[_i]; } _T const& operator[](size_t _i) const { assert(m_data); assert(_i < m_count); return m_data[_i]; } bool operator==(vector_ref<_T> const& _cmp) const { return m_data == _cmp.m_data && m_count == _cmp.m_count; } bool operator!=(vector_ref<_T> const& _cmp) const { return !operator==(_cmp); } #if DEV_LDB operator ldb::Slice() const { return ldb::Slice((char const*)m_data, m_count * sizeof(_T)); } #endif void reset() { m_data = nullptr; m_count = 0; } private: _T* m_data; size_t m_count; }; template vector_ref<_T const> ref(_T const& _t) { return vector_ref<_T const>(&_t, 1); } template vector_ref<_T> ref(_T& _t) { return vector_ref<_T>(&_t, 1); } template vector_ref<_T const> ref(std::vector<_T> const& _t) { return vector_ref<_T const>(&_t); } template vector_ref<_T> ref(std::vector<_T>& _t) { return vector_ref<_T>(&_t); } }