/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity abstract syntax tree. */ #include #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { TypeError ASTNode::createTypeError(string const& _description) const { return TypeError() << errinfo_sourceLocation(location()) << errinfo_comment(_description); } TypePointer ContractDefinition::type(ContractDefinition const* _currentContract) const { return make_shared(make_shared(*this), _currentContract); } void ContractDefinition::checkTypeRequirements() { for (ASTPointer const& baseSpecifier: baseContracts()) baseSpecifier->checkTypeRequirements(); checkDuplicateFunctions(); checkIllegalOverrides(); checkAbstractFunctions(); checkAbstractConstructors(); FunctionDefinition const* function = constructor(); if (function && !function->returnParameters().empty()) BOOST_THROW_EXCEPTION( function->returnParameterList()->createTypeError("Non-empty \"returns\" directive for constructor.") ); FunctionDefinition const* fallbackFunction = nullptr; for (ASTPointer const& function: definedFunctions()) { if (function->name().empty()) { if (fallbackFunction) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_comment("Only one fallback function is allowed.")); else { fallbackFunction = function.get(); if (!fallbackFunction->parameters().empty()) BOOST_THROW_EXCEPTION(fallbackFunction->parameterList().createTypeError("Fallback function cannot take parameters.")); } } if (!function->isFullyImplemented()) setFullyImplemented(false); } for (ASTPointer const& modifier: functionModifiers()) modifier->checkTypeRequirements(); for (ASTPointer const& function: definedFunctions()) function->checkTypeRequirements(); for (ASTPointer const& variable: m_stateVariables) variable->checkTypeRequirements(); checkExternalTypeClashes(); // check for hash collisions in function signatures set> hashes; for (auto const& it: interfaceFunctionList()) { FixedHash<4> const& hash = it.first; if (hashes.count(hash)) BOOST_THROW_EXCEPTION(createTypeError( string("Function signature hash collision for ") + it.second->externalSignature() )); hashes.insert(hash); } } map, FunctionTypePointer> ContractDefinition::interfaceFunctions() const { auto exportedFunctionList = interfaceFunctionList(); map, FunctionTypePointer> exportedFunctions; for (auto const& it: exportedFunctionList) exportedFunctions.insert(it); solAssert(exportedFunctionList.size() == exportedFunctions.size(), "Hash collision at Function Definition Hash calculation"); return exportedFunctions; } FunctionDefinition const* ContractDefinition::constructor() const { for (ASTPointer const& f: m_definedFunctions) if (f->isConstructor()) return f.get(); return nullptr; } FunctionDefinition const* ContractDefinition::fallbackFunction() const { for (ContractDefinition const* contract: linearizedBaseContracts()) for (ASTPointer const& f: contract->definedFunctions()) if (f->name().empty()) return f.get(); return nullptr; } void ContractDefinition::checkDuplicateFunctions() const { /// Checks that two functions with the same name defined in this contract have different /// argument types and that there is at most one constructor. map> functions; for (ASTPointer const& function: definedFunctions()) functions[function->name()].push_back(function.get()); if (functions[name()].size() > 1) { SecondarySourceLocation ssl; auto it = functions[name()].begin(); ++it; for (; it != functions[name()].end(); ++it) ssl.append("Another declaration is here:", (*it)->location()); BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(functions[name()].front()->location()) << errinfo_comment("More than one constructor defined.") << errinfo_secondarySourceLocation(ssl) ); } for (auto const& it: functions) { vector const& overloads = it.second; for (size_t i = 0; i < overloads.size(); ++i) for (size_t j = i + 1; j < overloads.size(); ++j) if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j]))) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(overloads[j]->location()) << errinfo_comment("Function with same name and arguments defined twice.") << errinfo_secondarySourceLocation(SecondarySourceLocation().append( "Other declaration is here:", overloads[i]->location())) ); } } void ContractDefinition::checkAbstractFunctions() { // Mapping from name to function definition (exactly one per argument type equality class) and // flag to indicate whether it is fully implemented. using FunTypeAndFlag = std::pair; map> functions; // Search from base to derived for (ContractDefinition const* contract: boost::adaptors::reverse(linearizedBaseContracts())) for (ASTPointer const& function: contract->definedFunctions()) { auto& overloads = functions[function->name()]; FunctionTypePointer funType = make_shared(*function); auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag) { return funType->hasEqualArgumentTypes(*_funAndFlag.first); }); if (it == overloads.end()) overloads.push_back(make_pair(funType, function->isFullyImplemented())); else if (it->second) { if (!function->isFullyImplemented()) BOOST_THROW_EXCEPTION(function->createTypeError("Redeclaring an already implemented function as abstract")); } else if (function->isFullyImplemented()) it->second = true; } // Set to not fully implemented if at least one flag is false. for (auto const& it: functions) for (auto const& funAndFlag: it.second) if (!funAndFlag.second) { setFullyImplemented(false); return; } } void ContractDefinition::checkAbstractConstructors() { set argumentsNeeded; // check that we get arguments for all base constructors that need it. // If not mark the contract as abstract (not fully implemented) vector const& bases = linearizedBaseContracts(); for (ContractDefinition const* contract: bases) if (FunctionDefinition const* constructor = contract->constructor()) if (contract != this && !constructor->parameters().empty()) argumentsNeeded.insert(contract); for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->constructor()) for (auto const& modifier: constructor->modifiers()) { auto baseContract = dynamic_cast( &modifier->name()->referencedDeclaration() ); if (baseContract) argumentsNeeded.erase(baseContract); } for (ASTPointer const& base: contract->baseContracts()) { auto baseContract = dynamic_cast( &base->name()->referencedDeclaration() ); solAssert(baseContract, ""); if (!base->arguments().empty()) argumentsNeeded.erase(baseContract); } } if (!argumentsNeeded.empty()) setFullyImplemented(false); } void ContractDefinition::checkIllegalOverrides() const { // TODO unify this at a later point. for this we need to put the constness and the access specifier // into the types map> functions; map modifiers; // We search from derived to base, so the stored item causes the error. for (ContractDefinition const* contract: linearizedBaseContracts()) { for (ASTPointer const& function: contract->definedFunctions()) { if (function->isConstructor()) continue; // constructors can neither be overridden nor override anything string const& name = function->name(); if (modifiers.count(name)) BOOST_THROW_EXCEPTION(modifiers[name]->createTypeError("Override changes function to modifier.")); FunctionType functionType(*function); // function should not change the return type for (FunctionDefinition const* overriding: functions[name]) { FunctionType overridingType(*overriding); if (!overridingType.hasEqualArgumentTypes(functionType)) continue; if ( overriding->visibility() != function->visibility() || overriding->isDeclaredConst() != function->isDeclaredConst() || overridingType != functionType ) BOOST_THROW_EXCEPTION(overriding->createTypeError("Override changes extended function signature.")); } functions[name].push_back(function.get()); } for (ASTPointer const& modifier: contract->functionModifiers()) { string const& name = modifier->name(); ModifierDefinition const*& override = modifiers[name]; if (!override) override = modifier.get(); else if (ModifierType(*override) != ModifierType(*modifier)) BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier signature.")); if (!functions[name].empty()) BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier to function.")); } } } void ContractDefinition::checkExternalTypeClashes() const { map>>> externalDeclarations; for (ContractDefinition const* contract: linearizedBaseContracts()) { for (ASTPointer const& f: contract->definedFunctions()) if (f->isPartOfExternalInterface()) { auto functionType = make_shared(*f); externalDeclarations[functionType->externalSignature(f->name())].push_back( make_pair(f.get(), functionType) ); } for (ASTPointer const& v: contract->stateVariables()) if (v->isPartOfExternalInterface()) { auto functionType = make_shared(*v); externalDeclarations[functionType->externalSignature(v->name())].push_back( make_pair(v.get(), functionType) ); } } for (auto const& it: externalDeclarations) for (size_t i = 0; i < it.second.size(); ++i) for (size_t j = i + 1; j < it.second.size(); ++j) if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second)) BOOST_THROW_EXCEPTION(it.second[j].first->createTypeError( "Function overload clash during conversion to external types for arguments." )); } vector> const& ContractDefinition::interfaceEvents() const { if (!m_interfaceEvents) { set eventsSeen; m_interfaceEvents.reset(new vector>()); for (ContractDefinition const* contract: linearizedBaseContracts()) for (ASTPointer const& e: contract->events()) if (eventsSeen.count(e->name()) == 0) { eventsSeen.insert(e->name()); m_interfaceEvents->push_back(e); } } return *m_interfaceEvents; } vector, FunctionTypePointer>> const& ContractDefinition::interfaceFunctionList() const { if (!m_interfaceFunctionList) { set functionsSeen; set signaturesSeen; m_interfaceFunctionList.reset(new vector, FunctionTypePointer>>()); for (ContractDefinition const* contract: linearizedBaseContracts()) { for (ASTPointer const& f: contract->definedFunctions()) { if (!f->isPartOfExternalInterface()) continue; string functionSignature = f->externalSignature(); if (signaturesSeen.count(functionSignature) == 0) { functionsSeen.insert(f->name()); signaturesSeen.insert(functionSignature); FixedHash<4> hash(dev::sha3(functionSignature)); m_interfaceFunctionList->push_back(make_pair(hash, make_shared(*f, false))); } } for (ASTPointer const& v: contract->stateVariables()) if (functionsSeen.count(v->name()) == 0 && v->isPartOfExternalInterface()) { FunctionType ftype(*v); solAssert(v->type().get(), ""); functionsSeen.insert(v->name()); FixedHash<4> hash(dev::sha3(ftype.externalSignature(v->name()))); m_interfaceFunctionList->push_back(make_pair(hash, make_shared(*v))); } } } return *m_interfaceFunctionList; } string const& ContractDefinition::devDocumentation() const { return m_devDocumentation; } string const& ContractDefinition::userDocumentation() const { return m_userDocumentation; } void ContractDefinition::setDevDocumentation(string const& _devDocumentation) { m_devDocumentation = _devDocumentation; } void ContractDefinition::setUserDocumentation(string const& _userDocumentation) { m_userDocumentation = _userDocumentation; } vector const& ContractDefinition::inheritableMembers() const { if (!m_inheritableMembers) { set memberSeen; m_inheritableMembers.reset(new vector()); auto addInheritableMember = [&](Declaration const* _decl) { if (memberSeen.count(_decl->name()) == 0 && _decl->isVisibleInDerivedContracts()) { memberSeen.insert(_decl->name()); m_inheritableMembers->push_back(_decl); } }; for (ASTPointer const& f: definedFunctions()) addInheritableMember(f.get()); for (ASTPointer const& v: stateVariables()) addInheritableMember(v.get()); for (ASTPointer const& s: definedStructs()) addInheritableMember(s.get()); } return *m_inheritableMembers; } TypePointer EnumValue::type(ContractDefinition const*) const { EnumDefinition const* parentDef = dynamic_cast(scope()); solAssert(parentDef, "Enclosing Scope of EnumValue was not set"); return make_shared(*parentDef); } void InheritanceSpecifier::checkTypeRequirements() { m_baseName->checkTypeRequirements(nullptr); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(nullptr); ContractDefinition const* base = dynamic_cast(&m_baseName->referencedDeclaration()); solAssert(base, "Base contract not available."); TypePointers parameterTypes = ContractType(*base).constructorType()->parameterTypes(); if (!m_arguments.empty() && parameterTypes.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError( "Wrong argument count for constructor call: " + toString(m_arguments.size()) + " arguments given but expected " + toString(parameterTypes.size()) + "." )); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->type()->isImplicitlyConvertibleTo(*parameterTypes[i])) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError( "Invalid type for argument in constructor call. " "Invalid implicit conversion from " + m_arguments[i]->type()->toString() + " to " + parameterTypes[i]->toString() + " requested." )); } TypePointer StructDefinition::type(ContractDefinition const*) const { return make_shared(make_shared(*this)); } void StructDefinition::checkMemberTypes() const { for (ASTPointer const& member: members()) if (!member->type()->canBeStored()) BOOST_THROW_EXCEPTION(member->createTypeError("Type cannot be used in struct.")); } void StructDefinition::checkRecursion() const { using StructPointer = StructDefinition const*; using StructPointersSet = set; function check = [&](StructPointer _struct, StructPointersSet const& _parents) { if (_parents.count(_struct)) BOOST_THROW_EXCEPTION( ParserError() << errinfo_sourceLocation(_struct->location()) << errinfo_comment("Recursive struct definition.") ); set parents = _parents; parents.insert(_struct); for (ASTPointer const& member: _struct->members()) if (member->type()->category() == Type::Category::Struct) { auto const& typeName = dynamic_cast(*member->typeName()); check( &dynamic_cast(*typeName.referencedDeclaration()), parents ); } }; check(this, StructPointersSet{}); } TypePointer EnumDefinition::type(ContractDefinition const*) const { return make_shared(make_shared(*this)); } TypePointer FunctionDefinition::type(ContractDefinition const*) const { return make_shared(*this); } void FunctionDefinition::checkTypeRequirements() { for (ASTPointer const& var: parameters() + returnParameters()) { if (!var->type()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); if (visibility() >= Visibility::Public && !(var->type()->externalType())) BOOST_THROW_EXCEPTION(var->createTypeError("Internal type is not allowed for public and external functions.")); } for (ASTPointer const& modifier: m_functionModifiers) modifier->checkTypeRequirements(isConstructor() ? dynamic_cast(*scope()).linearizedBaseContracts() : vector()); if (m_body) m_body->checkTypeRequirements(); } string FunctionDefinition::externalSignature() const { return FunctionType(*this).externalSignature(name()); } bool VariableDeclaration::isLValue() const { // External function parameters and constant declared variables are Read-Only return !isExternalCallableParameter() && !m_isConstant; } void VariableDeclaration::checkTypeRequirements() { // Variables can be declared without type (with "var"), in which case the first assignment // sets the type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. if (m_isConstant) { if (!dynamic_cast(scope())) BOOST_THROW_EXCEPTION(createTypeError("Illegal use of \"constant\" specifier.")); if (!m_value) BOOST_THROW_EXCEPTION(createTypeError("Uninitialized \"constant\" variable.")); else if (m_type && !m_type->isValueType()) // TODO: const is implemented only for uint, bytesXX and enums types. BOOST_THROW_EXCEPTION(createTypeError("Illegal use of \"constant\" specifier. \"constant\" is not implemented for this type yet.")); } if (m_type) { if (m_value) m_value->expectType(*m_type); } else { if (!m_value) // This feature might be extended in the future. BOOST_THROW_EXCEPTION(createTypeError("Assignment necessary for type detection.")); m_value->checkTypeRequirements(nullptr); TypePointer const& type = m_value->type(); if ( type->category() == Type::Category::IntegerConstant && !dynamic_pointer_cast(type)->integerType() ) BOOST_THROW_EXCEPTION(m_value->createTypeError("Invalid integer constant " + type->toString() + ".")); else if (type->category() == Type::Category::Void) BOOST_THROW_EXCEPTION(createTypeError("Variable cannot have void type.")); m_type = type->mobileType(); } solAssert(!!m_type, ""); if (!m_isStateVariable) { if (m_type->dataStoredIn(DataLocation::Memory) || m_type->dataStoredIn(DataLocation::CallData)) if (!m_type->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(createTypeError( "Type " + m_type->toString() + " is only valid in storage." )); } else if (visibility() >= Visibility::Public && !FunctionType(*this).externalType()) BOOST_THROW_EXCEPTION(createTypeError("Internal type is not allowed for public state variables.")); } bool VariableDeclaration::isCallableParameter() const { auto const* callable = dynamic_cast(scope()); if (!callable) return false; for (auto const& variable: callable->parameters()) if (variable.get() == this) return true; if (callable->returnParameterList()) for (auto const& variable: callable->returnParameterList()->parameters()) if (variable.get() == this) return true; return false; } bool VariableDeclaration::isExternalCallableParameter() const { auto const* callable = dynamic_cast(scope()); if (!callable || callable->visibility() != Declaration::Visibility::External) return false; for (auto const& variable: callable->parameters()) if (variable.get() == this) return true; return false; } TypePointer ModifierDefinition::type(ContractDefinition const*) const { return make_shared(*this); } void ModifierDefinition::checkTypeRequirements() { m_body->checkTypeRequirements(); } void ModifierInvocation::checkTypeRequirements(vector const& _bases) { TypePointers argumentTypes; for (ASTPointer const& argument: m_arguments) { argument->checkTypeRequirements(nullptr); argumentTypes.push_back(argument->type()); } m_modifierName->checkTypeRequirements(&argumentTypes); auto const* declaration = &m_modifierName->referencedDeclaration(); vector> emptyParameterList; vector> const* parameters = nullptr; if (auto modifier = dynamic_cast(declaration)) parameters = &modifier->parameters(); else // check parameters for Base constructors for (ContractDefinition const* base: _bases) if (declaration == base) { if (auto referencedConstructor = base->constructor()) parameters = &referencedConstructor->parameters(); else parameters = &emptyParameterList; break; } if (!parameters) BOOST_THROW_EXCEPTION(createTypeError("Referenced declaration is neither modifier nor base class.")); if (parameters->size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError( "Wrong argument count for modifier invocation: " + toString(m_arguments.size()) + " arguments given but expected " + toString(parameters->size()) + "." )); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->type()->isImplicitlyConvertibleTo(*(*parameters)[i]->type())) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError( "Invalid type for argument in modifier invocation. " "Invalid implicit conversion from " + m_arguments[i]->type()->toString() + " to " + (*parameters)[i]->type()->toString() + " requested." )); } void EventDefinition::checkTypeRequirements() { int numIndexed = 0; for (ASTPointer const& var: parameters()) { if (var->isIndexed()) numIndexed++; if (!var->type()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); if (!var->type()->externalType()) BOOST_THROW_EXCEPTION(var->createTypeError("Internal type is not allowed as event parameter type.")); } if (numIndexed > 3) BOOST_THROW_EXCEPTION(createTypeError("More than 3 indexed arguments for event.")); } void Block::checkTypeRequirements() { for (shared_ptr const& statement: m_statements) statement->checkTypeRequirements(); } void IfStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_trueBody->checkTypeRequirements(); if (m_falseBody) m_falseBody->checkTypeRequirements(); } void WhileStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_body->checkTypeRequirements(); } void ForStatement::checkTypeRequirements() { if (m_initExpression) m_initExpression->checkTypeRequirements(); if (m_condExpression) m_condExpression->expectType(BoolType()); if (m_loopExpression) m_loopExpression->checkTypeRequirements(); m_body->checkTypeRequirements(); } void Return::checkTypeRequirements() { if (!m_expression) return; if (!m_returnParameters) BOOST_THROW_EXCEPTION(createTypeError("Return arguments not allowed.")); if (m_returnParameters->parameters().size() != 1) BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement " "than in returns declaration.")); // this could later be changed such that the paramaters type is an anonymous struct type, // but for now, we only allow one return parameter m_expression->expectType(*m_returnParameters->parameters().front()->type()); } void VariableDeclarationStatement::checkTypeRequirements() { m_variable->checkTypeRequirements(); } void Assignment::checkTypeRequirements(TypePointers const*) { m_leftHandSide->checkTypeRequirements(nullptr); m_leftHandSide->requireLValue(); if (m_leftHandSide->type()->category() == Type::Category::Mapping) BOOST_THROW_EXCEPTION(createTypeError("Mappings cannot be assigned to.")); m_type = m_leftHandSide->type(); if (m_assigmentOperator == Token::Assign) m_rightHandSide->expectType(*m_type); else { // compound assignment m_rightHandSide->checkTypeRequirements(nullptr); TypePointer resultType = m_type->binaryOperatorResult(Token::AssignmentToBinaryOp(m_assigmentOperator), m_rightHandSide->type()); if (!resultType || *resultType != *m_type) BOOST_THROW_EXCEPTION(createTypeError("Operator " + string(Token::toString(m_assigmentOperator)) + " not compatible with types " + m_type->toString() + " and " + m_rightHandSide->type()->toString())); } } void ExpressionStatement::checkTypeRequirements() { m_expression->checkTypeRequirements(nullptr); if (m_expression->type()->category() == Type::Category::IntegerConstant) if (!dynamic_pointer_cast(m_expression->type())->integerType()) BOOST_THROW_EXCEPTION(m_expression->createTypeError("Invalid integer constant.")); } void Expression::expectType(Type const& _expectedType) { checkTypeRequirements(nullptr); Type const& currentType = *type(); if (!currentType.isImplicitlyConvertibleTo(_expectedType)) BOOST_THROW_EXCEPTION( createTypeError( "Type " + currentType.toString() + " is not implicitly convertible to expected type " + _expectedType.toString() + "." ) ); } void Expression::requireLValue() { if (!isLValue()) BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue.")); m_lvalueRequested = true; } void UnaryOperation::checkTypeRequirements(TypePointers const*) { // Inc, Dec, Add, Sub, Not, BitNot, Delete m_subExpression->checkTypeRequirements(nullptr); if (m_operator == Token::Value::Inc || m_operator == Token::Value::Dec || m_operator == Token::Value::Delete) m_subExpression->requireLValue(); m_type = m_subExpression->type()->unaryOperatorResult(m_operator); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type.")); } void BinaryOperation::checkTypeRequirements(TypePointers const*) { m_left->checkTypeRequirements(nullptr); m_right->checkTypeRequirements(nullptr); m_commonType = m_left->type()->binaryOperatorResult(m_operator, m_right->type()); if (!m_commonType) BOOST_THROW_EXCEPTION( createTypeError( "Operator " + string(Token::toString(m_operator)) + " not compatible with types " + m_left->type()->toString() + " and " + m_right->type()->toString() ) ); m_type = Token::isCompareOp(m_operator) ? make_shared() : m_commonType; } void FunctionCall::checkTypeRequirements(TypePointers const*) { bool isPositionalCall = m_names.empty(); // we need to check arguments' type first as they will be forwarded to // m_expression->checkTypeRequirements TypePointers argumentTypes; for (ASTPointer const& argument: m_arguments) { argument->checkTypeRequirements(nullptr); // only store them for positional calls if (isPositionalCall) argumentTypes.push_back(argument->type()); } m_expression->checkTypeRequirements(isPositionalCall ? &argumentTypes : nullptr); TypePointer const& expressionType = m_expression->type(); FunctionTypePointer functionType; if (isTypeConversion()) { TypeType const& type = dynamic_cast(*expressionType); if (m_arguments.size() != 1) BOOST_THROW_EXCEPTION(createTypeError("Exactly one argument expected for explicit type conversion.")); if (!isPositionalCall) BOOST_THROW_EXCEPTION(createTypeError("Type conversion cannot allow named arguments.")); m_type = type.actualType(); auto argType = m_arguments.front()->type(); if (auto argRefType = dynamic_cast(argType.get())) // do not change the data location when converting // (data location cannot yet be specified for type conversions) m_type = ReferenceType::copyForLocationIfReference(argRefType->location(), m_type); if (!argType->isExplicitlyConvertibleTo(*m_type)) BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed.")); return; } /// For error message: Struct members that were removed during conversion to memory. set membersRemovedForStructConstructor; if (isStructConstructorCall()) { TypeType const& type = dynamic_cast(*expressionType); auto const& structType = dynamic_cast(*type.actualType()); functionType = structType.constructorType(); membersRemovedForStructConstructor = structType.membersMissingInMemory(); } else functionType = dynamic_pointer_cast(expressionType); if (!functionType) BOOST_THROW_EXCEPTION(createTypeError("Type is not callable.")); //@todo would be nice to create a struct type from the arguments // and then ask if that is implicitly convertible to the struct represented by the // function parameters TypePointers const& parameterTypes = functionType->parameterTypes(); if (!functionType->takesArbitraryParameters() && parameterTypes.size() != m_arguments.size()) { string msg = "Wrong argument count for function call: " + toString(m_arguments.size()) + " arguments given but expected " + toString(parameterTypes.size()) + "."; // Extend error message in case we try to construct a struct with mapping member. if (isStructConstructorCall() && !membersRemovedForStructConstructor.empty()) { msg += " Members that have to be skipped in memory:"; for (auto const& member: membersRemovedForStructConstructor) msg += " " + member; } BOOST_THROW_EXCEPTION(createTypeError(msg)); } if (isPositionalCall) { // call by positional arguments for (size_t i = 0; i < m_arguments.size(); ++i) if ( !functionType->takesArbitraryParameters() && !m_arguments[i]->type()->isImplicitlyConvertibleTo(*parameterTypes[i]) ) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError( "Invalid type for argument in function call. " "Invalid implicit conversion from " + m_arguments[i]->type()->toString() + " to " + parameterTypes[i]->toString() + " requested." )); } else { // call by named arguments if (functionType->takesArbitraryParameters()) BOOST_THROW_EXCEPTION(createTypeError( "Named arguments cannnot be used for functions that take arbitrary parameters." )); auto const& parameterNames = functionType->parameterNames(); if (parameterNames.size() != m_names.size()) BOOST_THROW_EXCEPTION(createTypeError("Some argument names are missing.")); // check duplicate names for (size_t i = 0; i < m_names.size(); i++) for (size_t j = i + 1; j < m_names.size(); j++) if (*m_names[i] == *m_names[j]) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError("Duplicate named argument.")); for (size_t i = 0; i < m_names.size(); i++) { bool found = false; for (size_t j = 0; j < parameterNames.size(); j++) { if (parameterNames[j] == *m_names[i]) { // check type convertible if (!m_arguments[i]->type()->isImplicitlyConvertibleTo(*parameterTypes[j])) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError( "Invalid type for argument in function call. " "Invalid implicit conversion from " + m_arguments[i]->type()->toString() + " to " + parameterTypes[i]->toString() + " requested." )); found = true; break; } } if (!found) BOOST_THROW_EXCEPTION(createTypeError("Named argument does not match function declaration.")); } } // @todo actually the return type should be an anonymous struct, // but we change it to the type of the first return value until we have anonymous // structs and tuples if (functionType->returnParameterTypes().empty()) m_type = make_shared(); else m_type = functionType->returnParameterTypes().front(); } bool FunctionCall::isTypeConversion() const { return m_expression->type()->category() == Type::Category::TypeType && !isStructConstructorCall(); } bool FunctionCall::isStructConstructorCall() const { if (auto const* type = dynamic_cast(m_expression->type().get())) return type->actualType()->category() == Type::Category::Struct; else return false; } void NewExpression::checkTypeRequirements(TypePointers const*) { m_contractName->checkTypeRequirements(nullptr); m_contract = dynamic_cast(&m_contractName->referencedDeclaration()); if (!m_contract) BOOST_THROW_EXCEPTION(createTypeError("Identifier is not a contract.")); if (!m_contract->isFullyImplemented()) BOOST_THROW_EXCEPTION(createTypeError("Trying to create an instance of an abstract contract.")); shared_ptr contractType = make_shared(*m_contract); TypePointers const& parameterTypes = contractType->constructorType()->parameterTypes(); m_type = make_shared( parameterTypes, TypePointers{contractType}, strings(), strings(), FunctionType::Location::Creation); } void MemberAccess::checkTypeRequirements(TypePointers const* _argumentTypes) { m_expression->checkTypeRequirements(nullptr); Type const& type = *m_expression->type(); MemberList::MemberMap possibleMembers = type.members().membersByName(*m_memberName); if (possibleMembers.size() > 1 && _argumentTypes) { // do override resolution for (auto it = possibleMembers.begin(); it != possibleMembers.end();) if ( it->type->category() == Type::Category::Function && !dynamic_cast(*it->type).canTakeArguments(*_argumentTypes) ) it = possibleMembers.erase(it); else ++it; } if (possibleMembers.size() == 0) { auto storageType = ReferenceType::copyForLocationIfReference( DataLocation::Storage, m_expression->type() ); if (!storageType->members().membersByName(*m_memberName).empty()) BOOST_THROW_EXCEPTION(createTypeError( "Member \"" + *m_memberName + "\" is not available in " + type.toString() + " outside of storage." )); BOOST_THROW_EXCEPTION(createTypeError( "Member \"" + *m_memberName + "\" not found or not visible " "after argument-dependent lookup in " + type.toString() )); } else if (possibleMembers.size() > 1) BOOST_THROW_EXCEPTION(createTypeError( "Member \"" + *m_memberName + "\" not unique " "after argument-dependent lookup in " + type.toString() )); m_referencedDeclaration = possibleMembers.front().declaration; m_type = possibleMembers.front().type; if (type.category() == Type::Category::Struct) m_isLValue = true; else if (type.category() == Type::Category::Array) { auto const& arrayType(dynamic_cast(type)); m_isLValue = ( *m_memberName == "length" && arrayType.location() == DataLocation::Storage && arrayType.isDynamicallySized() ); } else m_isLValue = false; } void IndexAccess::checkTypeRequirements(TypePointers const*) { m_base->checkTypeRequirements(nullptr); switch (m_base->type()->category()) { case Type::Category::Array: { ArrayType const& type = dynamic_cast(*m_base->type()); if (!m_index) BOOST_THROW_EXCEPTION(createTypeError("Index expression cannot be omitted.")); if (type.isString()) BOOST_THROW_EXCEPTION(createTypeError("Index access for string is not possible.")); m_index->expectType(IntegerType(256)); if (type.isByteArray()) m_type = make_shared(1); else m_type = type.baseType(); m_isLValue = type.location() != DataLocation::CallData; break; } case Type::Category::Mapping: { MappingType const& type = dynamic_cast(*m_base->type()); if (!m_index) BOOST_THROW_EXCEPTION(createTypeError("Index expression cannot be omitted.")); m_index->expectType(*type.keyType()); m_type = type.valueType(); m_isLValue = true; break; } case Type::Category::TypeType: { TypeType const& type = dynamic_cast(*m_base->type()); if (!m_index) m_type = make_shared(make_shared(DataLocation::Memory, type.actualType())); else { m_index->checkTypeRequirements(nullptr); auto length = dynamic_cast(m_index->type().get()); if (!length) BOOST_THROW_EXCEPTION(m_index->createTypeError("Integer constant expected.")); m_type = make_shared(make_shared( DataLocation::Memory, type.actualType(), length->literalValue(nullptr) )); } break; } default: BOOST_THROW_EXCEPTION(m_base->createTypeError( "Indexed expression has to be a type, mapping or array (is " + m_base->type()->toString() + ")")); } } void Identifier::checkTypeRequirements(TypePointers const* _argumentTypes) { if (!m_referencedDeclaration) { if (!_argumentTypes) BOOST_THROW_EXCEPTION(createTypeError("Unable to determine overloaded type.")); overloadResolution(*_argumentTypes); } solAssert(!!m_referencedDeclaration, "Referenced declaration is null after overload resolution."); m_isLValue = m_referencedDeclaration->isLValue(); m_type = m_referencedDeclaration->type(m_currentContract); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Declaration referenced before type could be determined.")); } Declaration const& Identifier::referencedDeclaration() const { solAssert(!!m_referencedDeclaration, "Identifier not resolved."); return *m_referencedDeclaration; } void Identifier::overloadResolution(TypePointers const& _argumentTypes) { solAssert(!m_referencedDeclaration, "Referenced declaration should be null before overload resolution."); solAssert(!m_overloadedDeclarations.empty(), "No candidates for overload resolution found."); vector possibles; if (m_overloadedDeclarations.size() == 1) m_referencedDeclaration = *m_overloadedDeclarations.begin(); for (Declaration const* declaration: m_overloadedDeclarations) { TypePointer const& function = declaration->type(); auto const* functionType = dynamic_cast(function.get()); if (functionType && functionType->canTakeArguments(_argumentTypes)) possibles.push_back(declaration); } if (possibles.size() == 1) m_referencedDeclaration = possibles.front(); else if (possibles.empty()) BOOST_THROW_EXCEPTION(createTypeError("No matching declaration found after argument-dependent lookup.")); else BOOST_THROW_EXCEPTION(createTypeError("No unique declaration found after argument-dependent lookup.")); } void ElementaryTypeNameExpression::checkTypeRequirements(TypePointers const*) { m_type = make_shared(Type::fromElementaryTypeName(m_typeToken)); } void Literal::checkTypeRequirements(TypePointers const*) { m_type = Type::forLiteral(*this); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Invalid literal value.")); } } }