/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Parser part that determines the declarations corresponding to names and the types of expressions. */ #include #include #include using namespace std; namespace dev { namespace solidity { NameAndTypeResolver::NameAndTypeResolver(vector const& _globals) { for (Declaration const* declaration: _globals) m_scopes[nullptr].registerDeclaration(*declaration); } void NameAndTypeResolver::registerDeclarations(SourceUnit& _sourceUnit) { // The helper registers all declarations in m_scopes as a side-effect of its construction. DeclarationRegistrationHelper registrar(m_scopes, _sourceUnit); } void NameAndTypeResolver::resolveNamesAndTypes(ContractDefinition& _contract) { m_currentScope = &m_scopes[nullptr]; for (ASTPointer const& baseContract: _contract.getBaseContracts()) ReferencesResolver resolver(*baseContract, *this, &_contract, nullptr); m_currentScope = &m_scopes[&_contract]; linearizeBaseContracts(_contract); std::vector properBases( ++_contract.getLinearizedBaseContracts().begin(), _contract.getLinearizedBaseContracts().end() ); for (ContractDefinition const* base: properBases) importInheritedScope(*base); for (ASTPointer const& structDef: _contract.getDefinedStructs()) ReferencesResolver resolver(*structDef, *this, &_contract, nullptr); for (ASTPointer const& enumDef: _contract.getDefinedEnums()) ReferencesResolver resolver(*enumDef, *this, &_contract, nullptr); for (ASTPointer const& variable: _contract.getStateVariables()) ReferencesResolver resolver(*variable, *this, &_contract, nullptr); for (ASTPointer const& event: _contract.getEvents()) ReferencesResolver resolver(*event, *this, &_contract, nullptr); // these can contain code, only resolve parameters for now for (ASTPointer const& modifier: _contract.getFunctionModifiers()) { m_currentScope = &m_scopes[modifier.get()]; ReferencesResolver resolver(*modifier, *this, &_contract, nullptr); } for (ASTPointer const& function: _contract.getDefinedFunctions()) { m_currentScope = &m_scopes[function.get()]; ReferencesResolver referencesResolver(*function, *this, &_contract, function->getReturnParameterList().get()); } m_currentScope = &m_scopes[&_contract]; // now resolve references inside the code for (ASTPointer const& modifier: _contract.getFunctionModifiers()) { m_currentScope = &m_scopes[modifier.get()]; ReferencesResolver resolver(*modifier, *this, &_contract, nullptr, true); } for (ASTPointer const& function: _contract.getDefinedFunctions()) { m_currentScope = &m_scopes[function.get()]; ReferencesResolver referencesResolver( *function, *this, &_contract, function->getReturnParameterList().get(), true ); } } void NameAndTypeResolver::checkTypeRequirements(ContractDefinition& _contract) { for (ASTPointer const& structDef: _contract.getDefinedStructs()) structDef->checkValidityOfMembers(); _contract.checkTypeRequirements(); } void NameAndTypeResolver::updateDeclaration(Declaration const& _declaration) { m_scopes[nullptr].registerDeclaration(_declaration, false, true); solAssert(_declaration.getScope() == nullptr, "Updated declaration outside global scope."); } vector NameAndTypeResolver::resolveName(ASTString const& _name, Declaration const* _scope) const { auto iterator = m_scopes.find(_scope); if (iterator == end(m_scopes)) return vector({}); return iterator->second.resolveName(_name, false); } vector NameAndTypeResolver::getNameFromCurrentScope(ASTString const& _name, bool _recursive) { return m_currentScope->resolveName(_name, _recursive); } vector NameAndTypeResolver::cleanedDeclarations( Identifier const& _identifier, vector const& _declarations ) { solAssert(_declarations.size() > 1, ""); vector uniqueFunctions; for (auto it = _declarations.begin(); it != _declarations.end(); ++it) { solAssert(*it, ""); // the declaration is functionDefinition while declarations > 1 FunctionDefinition const& functionDefinition = dynamic_cast(**it); FunctionType functionType(functionDefinition); for (auto parameter: functionType.getParameterTypes() + functionType.getReturnParameterTypes()) if (!parameter) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(_identifier.getLocation()) << errinfo_comment("Function type can not be used in this context") ); if (uniqueFunctions.end() == find_if( uniqueFunctions.begin(), uniqueFunctions.end(), [&](Declaration const* d) { FunctionType newFunctionType(dynamic_cast(*d)); return functionType.hasEqualArgumentTypes(newFunctionType); } )) uniqueFunctions.push_back(*it); } return uniqueFunctions; } void NameAndTypeResolver::importInheritedScope(ContractDefinition const& _base) { auto iterator = m_scopes.find(&_base); solAssert(iterator != end(m_scopes), ""); for (auto const& nameAndDeclaration: iterator->second.getDeclarations()) for (auto const& declaration: nameAndDeclaration.second) // Import if it was declared in the base, is not the constructor and is visible in derived classes if (declaration->getScope() == &_base && declaration->isVisibleInDerivedContracts()) m_currentScope->registerDeclaration(*declaration); } void NameAndTypeResolver::linearizeBaseContracts(ContractDefinition& _contract) const { // order in the lists is from derived to base // list of lists to linearize, the last element is the list of direct bases list> input(1, {}); for (ASTPointer const& baseSpecifier: _contract.getBaseContracts()) { ASTPointer baseName = baseSpecifier->getName(); auto base = dynamic_cast(&baseName->getReferencedDeclaration()); if (!base) BOOST_THROW_EXCEPTION(baseName->createTypeError("Contract expected.")); // "push_front" has the effect that bases mentioned later can overwrite members of bases // mentioned earlier input.back().push_front(base); vector const& basesBases = base->getLinearizedBaseContracts(); if (basesBases.empty()) BOOST_THROW_EXCEPTION(baseName->createTypeError("Definition of base has to precede definition of derived contract")); input.push_front(list(basesBases.begin(), basesBases.end())); } input.back().push_front(&_contract); vector result = cThreeMerge(input); if (result.empty()) BOOST_THROW_EXCEPTION(_contract.createTypeError("Linearization of inheritance graph impossible")); _contract.setLinearizedBaseContracts(result); } template vector<_T const*> NameAndTypeResolver::cThreeMerge(list>& _toMerge) { // returns true iff _candidate appears only as last element of the lists auto appearsOnlyAtHead = [&](_T const* _candidate) -> bool { for (list<_T const*> const& bases: _toMerge) { solAssert(!bases.empty(), ""); if (find(++bases.begin(), bases.end(), _candidate) != bases.end()) return false; } return true; }; // returns the next candidate to append to the linearized list or nullptr on failure auto nextCandidate = [&]() -> _T const* { for (list<_T const*> const& bases: _toMerge) { solAssert(!bases.empty(), ""); if (appearsOnlyAtHead(bases.front())) return bases.front(); } return nullptr; }; // removes the given contract from all lists auto removeCandidate = [&](_T const* _candidate) { for (auto it = _toMerge.begin(); it != _toMerge.end();) { it->remove(_candidate); if (it->empty()) it = _toMerge.erase(it); else ++it; } }; _toMerge.remove_if([](list<_T const*> const& _bases) { return _bases.empty(); }); vector<_T const*> result; while (!_toMerge.empty()) { _T const* candidate = nextCandidate(); if (!candidate) return vector<_T const*>(); result.push_back(candidate); removeCandidate(candidate); } return result; } DeclarationRegistrationHelper::DeclarationRegistrationHelper(map& _scopes, ASTNode& _astRoot): m_scopes(_scopes), m_currentScope(nullptr) { _astRoot.accept(*this); } bool DeclarationRegistrationHelper::visit(ContractDefinition& _contract) { registerDeclaration(_contract, true); return true; } void DeclarationRegistrationHelper::endVisit(ContractDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(StructDefinition& _struct) { registerDeclaration(_struct, true); return true; } void DeclarationRegistrationHelper::endVisit(StructDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(EnumDefinition& _enum) { registerDeclaration(_enum, true); return true; } void DeclarationRegistrationHelper::endVisit(EnumDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(EnumValue& _value) { registerDeclaration(_value, false); return true; } bool DeclarationRegistrationHelper::visit(FunctionDefinition& _function) { registerDeclaration(_function, true); m_currentFunction = &_function; return true; } void DeclarationRegistrationHelper::endVisit(FunctionDefinition&) { m_currentFunction = nullptr; closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(ModifierDefinition& _modifier) { registerDeclaration(_modifier, true); m_currentFunction = &_modifier; return true; } void DeclarationRegistrationHelper::endVisit(ModifierDefinition&) { m_currentFunction = nullptr; closeCurrentScope(); } void DeclarationRegistrationHelper::endVisit(VariableDeclarationStatement& _variableDeclarationStatement) { // Register the local variables with the function // This does not fit here perfectly, but it saves us another AST visit. solAssert(m_currentFunction, "Variable declaration without function."); m_currentFunction->addLocalVariable(_variableDeclarationStatement.getDeclaration()); } bool DeclarationRegistrationHelper::visit(VariableDeclaration& _declaration) { registerDeclaration(_declaration, false); return true; } bool DeclarationRegistrationHelper::visit(EventDefinition& _event) { registerDeclaration(_event, true); return true; } void DeclarationRegistrationHelper::endVisit(EventDefinition&) { closeCurrentScope(); } void DeclarationRegistrationHelper::enterNewSubScope(Declaration const& _declaration) { map::iterator iter; bool newlyAdded; tie(iter, newlyAdded) = m_scopes.emplace(&_declaration, DeclarationContainer(m_currentScope, &m_scopes[m_currentScope])); solAssert(newlyAdded, "Unable to add new scope."); m_currentScope = &_declaration; } void DeclarationRegistrationHelper::closeCurrentScope() { solAssert(m_currentScope, "Closed non-existing scope."); m_currentScope = m_scopes[m_currentScope].getEnclosingDeclaration(); } void DeclarationRegistrationHelper::registerDeclaration(Declaration& _declaration, bool _opensScope) { if (!m_scopes[m_currentScope].registerDeclaration(_declaration, !_declaration.isVisibleInContract())) { SourceLocation firstDeclarationLocation; SourceLocation secondDeclarationLocation; Declaration const* conflictingDeclaration = m_scopes[m_currentScope].conflictingDeclaration(_declaration); solAssert(conflictingDeclaration, ""); if (_declaration.getLocation().start < conflictingDeclaration->getLocation().start) { firstDeclarationLocation = _declaration.getLocation(); secondDeclarationLocation = conflictingDeclaration->getLocation(); } else { firstDeclarationLocation = conflictingDeclaration->getLocation(); secondDeclarationLocation = _declaration.getLocation(); } BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(secondDeclarationLocation) << errinfo_comment("Identifier already declared.") << errinfo_secondarySourceLocation( SecondarySourceLocation().append("The previous declaration is here:", firstDeclarationLocation) ) ); } _declaration.setScope(m_currentScope); if (_opensScope) enterNewSubScope(_declaration); } ReferencesResolver::ReferencesResolver( ASTNode& _root, NameAndTypeResolver& _resolver, ContractDefinition const* _currentContract, ParameterList const* _returnParameters, bool _resolveInsideCode, bool _allowLazyTypes ): m_resolver(_resolver), m_currentContract(_currentContract), m_returnParameters(_returnParameters), m_resolveInsideCode(_resolveInsideCode), m_allowLazyTypes(_allowLazyTypes) { _root.accept(*this); } void ReferencesResolver::endVisit(VariableDeclaration& _variable) { // endVisit because the internal type needs resolving if it is a user defined type // or mapping if (_variable.getTypeName()) { TypePointer type = _variable.getTypeName()->toType(); using Location = VariableDeclaration::Location; Location loc = _variable.referenceLocation(); // References are forced to calldata for external function parameters (not return) // and memory for parameters (also return) of publicly visible functions. // They default to memory for function parameters and storage for local variables. if (auto ref = dynamic_cast(type.get())) { if (_variable.isExternalCallableParameter()) { // force location of external function parameters (not return) to calldata if (loc != Location::Default) BOOST_THROW_EXCEPTION(_variable.createTypeError( "Location has to be calldata for external functions " "(remove the \"memory\" or \"storage\" keyword)." )); type = ref->copyForLocation(DataLocation::CallData, true); } else if (_variable.isCallableParameter() && _variable.getScope()->isPublic()) { // force locations of public or external function (return) parameters to memory if (loc == VariableDeclaration::Location::Storage) BOOST_THROW_EXCEPTION(_variable.createTypeError( "Location has to be memory for publicly visible functions " "(remove the \"storage\" keyword)." )); type = ref->copyForLocation(DataLocation::Memory, true); } else { if (loc == Location::Default) loc = _variable.isCallableParameter() ? Location::Memory : Location::Storage; bool isPointer = !_variable.isStateVariable(); type = ref->copyForLocation( loc == Location::Memory ? DataLocation::Memory : DataLocation::Storage, isPointer ); } } else if (loc != Location::Default && !ref) BOOST_THROW_EXCEPTION(_variable.createTypeError( "Storage location can only be given for array or struct types." )); _variable.setType(type); if (!_variable.getType()) BOOST_THROW_EXCEPTION(_variable.getTypeName()->createTypeError("Invalid type name")); } else if (!m_allowLazyTypes) BOOST_THROW_EXCEPTION(_variable.createTypeError("Explicit type needed.")); // otherwise we have a "var"-declaration whose type is resolved by the first assignment } bool ReferencesResolver::visit(Return& _return) { _return.setFunctionReturnParameters(m_returnParameters); return true; } bool ReferencesResolver::visit(Mapping&) { return true; } bool ReferencesResolver::visit(UserDefinedTypeName& _typeName) { auto declarations = m_resolver.getNameFromCurrentScope(_typeName.getName()); if (declarations.empty()) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(_typeName.getLocation()) << errinfo_comment("Undeclared identifier.") ); else if (declarations.size() > 1) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(_typeName.getLocation()) << errinfo_comment("Duplicate identifier.") ); else _typeName.setReferencedDeclaration(**declarations.begin()); return false; } bool ReferencesResolver::visit(Identifier& _identifier) { auto declarations = m_resolver.getNameFromCurrentScope(_identifier.getName()); if (declarations.empty()) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(_identifier.getLocation()) << errinfo_comment("Undeclared identifier.") ); else if (declarations.size() == 1) _identifier.setReferencedDeclaration(*declarations.front(), m_currentContract); else _identifier.setOverloadedDeclarations(m_resolver.cleanedDeclarations(_identifier, declarations)); return false; } } }