/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Optimiser component that removes assignments to variables that are not used * until they go out of scope or are re-assigned. */ #include #include #include #include #include using namespace std; using namespace dev; using namespace yul; using namespace dev::solidity; void RedundantAssignEliminator::operator()(Identifier const& _identifier) { changeUndecidedTo(_identifier.name, State::Used); } void RedundantAssignEliminator::operator()(VariableDeclaration const& _variableDeclaration) { ASTWalker::operator()(_variableDeclaration); for (auto const& var: _variableDeclaration.variables) m_declaredVariables.emplace(var.name); } void RedundantAssignEliminator::operator()(Assignment const& _assignment) { visit(*_assignment.value); for (auto const& var: _assignment.variableNames) changeUndecidedTo(var.name, State::Unused); if (_assignment.variableNames.size() == 1) // Default-construct it in "Undecided" state if it does not yet exist. m_assignments[_assignment.variableNames.front().name][&_assignment]; } void RedundantAssignEliminator::operator()(If const& _if) { visit(*_if.condition); RedundantAssignEliminator branch{*this}; branch(_if.body); join(branch); } void RedundantAssignEliminator::operator()(Switch const& _switch) { visit(*_switch.expression); bool hasDefault = false; vector branches; for (auto const& c: _switch.cases) { if (!c.value) hasDefault = true; branches.emplace_back(*this); branches.back()(c.body); } if (hasDefault) { *this = std::move(branches.back()); branches.pop_back(); } for (auto& branch: branches) join(branch); } void RedundantAssignEliminator::operator()(FunctionDefinition const& _functionDefinition) { (*this)(_functionDefinition.body); for (auto const& param: _functionDefinition.parameters) { changeUndecidedTo(param.name, State::Unused); finalize(param.name); } for (auto const& retParam: _functionDefinition.returnVariables) { changeUndecidedTo(retParam.name, State::Used); finalize(retParam.name); } } void RedundantAssignEliminator::operator()(ForLoop const& _forLoop) { // This will set all variables that are declared in this // block to "unused" when it is destroyed. BlockScope scope(*this); // We need to visit the statements directly because of the // scoping rules. walkVector(_forLoop.pre.statements); // We just run the loop twice to account for the // back edge. // There need not be more runs because we only have three different states. visit(*_forLoop.condition); RedundantAssignEliminator zeroRuns{*this}; (*this)(_forLoop.body); (*this)(_forLoop.post); visit(*_forLoop.condition); RedundantAssignEliminator oneRun{*this}; (*this)(_forLoop.body); (*this)(_forLoop.post); visit(*_forLoop.condition); // Order does not matter because "max" is commutative and associative. join(oneRun); join(zeroRuns); } void RedundantAssignEliminator::operator()(Block const& _block) { // This will set all variables that are declared in this // block to "unused" when it is destroyed. BlockScope scope(*this); ASTWalker::operator()(_block); } void RedundantAssignEliminator::run(Dialect const& _dialect, Block& _ast) { RedundantAssignEliminator rae{_dialect}; rae(_ast); AssignmentRemover remover{rae.m_assignmentsToRemove}; remover(_ast); } template void joinMap(std::map& _a, std::map&& _b, F _conflictSolver) { // TODO Perhaps it is better to just create a sorted list // and then use insert(begin, end) auto ita = _a.begin(); auto aend = _a.end(); auto itb = _b.begin(); auto bend = _b.end(); for (; itb != bend; ++ita) { if (ita == aend) ita = _a.insert(ita, std::move(*itb++)); else if (ita->first < itb->first) continue; else if (itb->first < ita->first) ita = _a.insert(ita, std::move(*itb++)); else { _conflictSolver(ita->second, std::move(itb->second)); ++itb; } } } void RedundantAssignEliminator::join(RedundantAssignEliminator& _other) { m_assignmentsToRemove.insert(begin(_other.m_assignmentsToRemove), end(_other.m_assignmentsToRemove)); joinMap(m_assignments, std::move(_other.m_assignments), []( map& _assignmentHere, map&& _assignmentThere ) { return joinMap(_assignmentHere, std::move(_assignmentThere), State::join); }); } void RedundantAssignEliminator::changeUndecidedTo(YulString _variable, RedundantAssignEliminator::State _newState) { for (auto& assignment: m_assignments[_variable]) if (assignment.second == State{State::Undecided}) assignment.second = _newState; } void RedundantAssignEliminator::finalize(YulString _variable) { for (auto& assignment: m_assignments[_variable]) { assertThrow(assignment.second != State::Undecided, OptimizerException, ""); if (assignment.second == State{State::Unused} && MovableChecker{*m_dialect, *assignment.first->value}.movable()) // TODO the only point where we actually need this // to be a set is for the for loop m_assignmentsToRemove.insert(assignment.first); } m_assignments.erase(_variable); } void AssignmentRemover::operator()(Block& _block) { boost::range::remove_erase_if(_block.statements, [=](Statement const& _statement) -> bool { return _statement.type() == typeid(Assignment) && m_toRemove.count(&boost::get(_statement)); }); ASTModifier::operator()(_block); }