/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* Optimiser component that removes assignments to variables that are not used
* until they go out of scope or are re-assigned.
*/
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace yul;
using namespace dev::solidity;
void RedundantAssignEliminator::operator()(Identifier const& _identifier)
{
changeUndecidedTo(_identifier.name, State::Used);
}
void RedundantAssignEliminator::operator()(VariableDeclaration const& _variableDeclaration)
{
ASTWalker::operator()(_variableDeclaration);
for (auto const& var: _variableDeclaration.variables)
m_declaredVariables.emplace(var.name);
}
void RedundantAssignEliminator::operator()(Assignment const& _assignment)
{
visit(*_assignment.value);
for (auto const& var: _assignment.variableNames)
changeUndecidedTo(var.name, State::Unused);
if (_assignment.variableNames.size() == 1)
// Default-construct it in "Undecided" state if it does not yet exist.
m_assignments[_assignment.variableNames.front().name][&_assignment];
}
void RedundantAssignEliminator::operator()(If const& _if)
{
visit(*_if.condition);
RedundantAssignEliminator branch{*this};
branch(_if.body);
join(branch);
}
void RedundantAssignEliminator::operator()(Switch const& _switch)
{
visit(*_switch.expression);
bool hasDefault = false;
vector branches;
for (auto const& c: _switch.cases)
{
if (!c.value)
hasDefault = true;
branches.emplace_back(*this);
branches.back()(c.body);
}
if (hasDefault)
{
*this = std::move(branches.back());
branches.pop_back();
}
for (auto& branch: branches)
join(branch);
}
void RedundantAssignEliminator::operator()(FunctionDefinition const& _functionDefinition)
{
(*this)(_functionDefinition.body);
for (auto const& param: _functionDefinition.parameters)
{
changeUndecidedTo(param.name, State::Unused);
finalize(param.name);
}
for (auto const& retParam: _functionDefinition.returnVariables)
{
changeUndecidedTo(retParam.name, State::Used);
finalize(retParam.name);
}
}
void RedundantAssignEliminator::operator()(ForLoop const& _forLoop)
{
// This will set all variables that are declared in this
// block to "unused" when it is destroyed.
BlockScope scope(*this);
// We need to visit the statements directly because of the
// scoping rules.
walkVector(_forLoop.pre.statements);
// We just run the loop twice to account for the
// back edge.
// There need not be more runs because we only have three different states.
visit(*_forLoop.condition);
RedundantAssignEliminator zeroRuns{*this};
(*this)(_forLoop.body);
(*this)(_forLoop.post);
visit(*_forLoop.condition);
RedundantAssignEliminator oneRun{*this};
(*this)(_forLoop.body);
(*this)(_forLoop.post);
visit(*_forLoop.condition);
// Order does not matter because "max" is commutative and associative.
join(oneRun);
join(zeroRuns);
}
void RedundantAssignEliminator::operator()(Block const& _block)
{
// This will set all variables that are declared in this
// block to "unused" when it is destroyed.
BlockScope scope(*this);
ASTWalker::operator()(_block);
}
void RedundantAssignEliminator::run(Dialect const& _dialect, Block& _ast)
{
RedundantAssignEliminator rae{_dialect};
rae(_ast);
AssignmentRemover remover{rae.m_assignmentsToRemove};
remover(_ast);
}
template
void joinMap(std::map& _a, std::map&& _b, F _conflictSolver)
{
// TODO Perhaps it is better to just create a sorted list
// and then use insert(begin, end)
auto ita = _a.begin();
auto aend = _a.end();
auto itb = _b.begin();
auto bend = _b.end();
for (; itb != bend; ++ita)
{
if (ita == aend)
ita = _a.insert(ita, std::move(*itb++));
else if (ita->first < itb->first)
continue;
else if (itb->first < ita->first)
ita = _a.insert(ita, std::move(*itb++));
else
{
_conflictSolver(ita->second, std::move(itb->second));
++itb;
}
}
}
void RedundantAssignEliminator::join(RedundantAssignEliminator& _other)
{
m_assignmentsToRemove.insert(begin(_other.m_assignmentsToRemove), end(_other.m_assignmentsToRemove));
joinMap(m_assignments, std::move(_other.m_assignments), [](
map& _assignmentHere,
map&& _assignmentThere
)
{
return joinMap(_assignmentHere, std::move(_assignmentThere), State::join);
});
}
void RedundantAssignEliminator::changeUndecidedTo(YulString _variable, RedundantAssignEliminator::State _newState)
{
for (auto& assignment: m_assignments[_variable])
if (assignment.second == State{State::Undecided})
assignment.second = _newState;
}
void RedundantAssignEliminator::finalize(YulString _variable)
{
for (auto& assignment: m_assignments[_variable])
{
assertThrow(assignment.second != State::Undecided, OptimizerException, "");
if (assignment.second == State{State::Unused} && MovableChecker{*m_dialect, *assignment.first->value}.movable())
// TODO the only point where we actually need this
// to be a set is for the for loop
m_assignmentsToRemove.insert(assignment.first);
}
m_assignments.erase(_variable);
}
void AssignmentRemover::operator()(Block& _block)
{
boost::range::remove_erase_if(_block.statements, [=](Statement const& _statement) -> bool {
return _statement.type() == typeid(Assignment) && m_toRemove.count(&boost::get(_statement));
});
ASTModifier::operator()(_block);
}