1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
|
#################################################
Joyfully Universal Language for (Inline) Assembly
#################################################
.. _julia:
.. index:: ! assembly, ! asm, ! evmasm, ! julia
JULIA is an intermediate language that can compile to various different backends
(EVM 1.0, EVM 1.5 and eWASM are planned).
Because of that, it is designed to be a usable common denominator of all three
platforms.
It can already be used for "inline assembly" inside Solidity and
future versions of the Solidity compiler will even use JULIA as intermediate
language. It should also be easy to build high-level optimizer stages for JULIA.
The core components of JULIA are functions, blocks, variables, literals,
for-loops, switch-statements, expressions and assignments to variables.
JULIA is typed, both variables and literals must specify the type with postfix
notation. The supported types are ``bool``, ``u8``, ``s8``, ``u32``, ``s32``,
``u64``, ``s64``, ``u128``, ``s128``, ``u256`` and ``s256``.
JULIA in itself does not even provide operators. If the EVM is targeted,
opcodes will be available as built-in functions, but they can be reimplemented
if the backend changes. For a list of mandatory built-in functions, see the section below.
The following example program assumes that the EVM opcodes ``mul``, ``div``
and ``mod`` are available either natively or as functions and computes exponentiation.
.. code::
{
function power(base:u256, exponent:u256) -> result:u256
{
switch exponent
case 0:u256 { result := 1:u256 }
case 1:u256 { result := base }
default:
{
result := power(mul(base, base), div(exponent, 2:u256))
switch mod(exponent, 2:u256)
case 1:u256 { result := mul(base, result) }
}
}
}
It is also possible to implement the same function using a for-loop
instead of with recursion. Here, we need the EVM opcodes ``lt`` (less-than)
and ``add`` to be available.
.. code::
{
function power(base:u256, exponent:u256) -> result:u256
{
result := 1:u256
for { let i := 0:u256 } lt(i, exponent) { i := add(i, 1:u256) }
{
result := mul(result, base)
}
}
}
Specification of JULIA
======================
JULIA code is described in this chapter. JULIA code is usually placed into a JULIA object, which is described in the following chapter.
Grammar::
Block = '{' Statement* '}'
Statement =
Block |
FunctionDefinition |
VariableDeclaration |
Assignment |
Expression |
Switch |
ForLoop |
BreakContinue
FunctionDefinition =
'function' Identifier '(' TypedIdentifierList? ')'
( '->' TypedIdentifierList )? Block
VariableDeclaration =
'let' TypedIdentifierList ( ':=' Expression )?
Assignment =
IdentifierList ':=' Expression
Expression =
FunctionCall | Identifier | Literal
Switch =
'switch' Expression Case* ( 'default' Block )?
Case =
'case' Literal Block
ForLoop =
'for' Block Expression Block Block
BreakContinue =
'break' | 'continue'
FunctionCall =
Identifier '(' ( Expression ( ',' Expression )* )? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier ( ',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ( '8' | '32' | '64' | '128' | '256' )
TypedIdentifierList = Identifier ':' TypeName ( ',' Identifier ':' TypeName )*
Literal =
(NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':' TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+
Restrictions on the Grammar
---------------------------
Switches must have at least one case (including the default case).
If all possible values of the expression is covered, the default case should
not be allowed (i.e. a switch with a ``bool`` expression and having both a
true and false case should not allow a default case).
Every expression evaluates to zero or more values. Identifiers and Literals
evaluate to exactly
one value and function calls evaluate to a number of values equal to the
number of return values of the function called.
In variable declarations and assignments, the right-hand-side expression
(if present) has to evaluate to a number of values equal to the number of
variables on the left-hand-side.
This is the only situation where an expression evaluating
to more than one value is allowed.
Expressions that are also statements (i.e. at the block level) have to
evaluate to zero values.
In all other situations, expressions have to evaluate to exactly one value.
The ``continue`` and ``break`` statements can only be used inside loop bodies
and have to be in the same function as the loop (or both have to be at the
top level).
The condition part of the for-loop has to evaluate to exactly one value.
Literals cannot be larger than the their type. The largest type defined is 256-bit wide.
Scoping Rules
-------------
Scopes in JULIA are tied to Blocks (exceptions are functions and the for loop
as explained below) and all declarations
(``FunctionDefinition``, ``VariableDeclaration``)
introduce new identifiers into these scopes.
Identifiers are visible in
the block they are defined in (including all sub-nodes and sub-blocks).
As an exception, identifiers defined in the "init" part of the for-loop
(the first block) are visible in all other parts of the for-loop
(but not outside of the loop).
Identifiers declared in the other parts of the for loop respect the regular
syntatical scoping rules.
The parameters and return parameters of functions are visible in the
function body and their names cannot overlap.
Variables can only be referenced after their declaration. In particular,
variables cannot be referenced in the right hand side of their own variable
declaration.
Functions can be referenced already before their declaration (if they are visible).
Shadowing is disallowed, i.e. you cannot declare an identifier at a point
where another identifier with the same name is also visible, even if it is
not accessible.
Inside functions, it is not possible to access a variable that was declared
outside of that function.
Formal Specification
--------------------
We formally specify JULIA by providing an evaluation function E overloaded
on the various nodes of the AST. Any functions can have side effects, so
E takes two state objects and the AST node and returns two new
state objects and a variable number of other values.
The two state objects are the global state object
(which in the context of the EVM is the memory, storage and state of the
blockchain) and the local state object (the state of local variables, i.e. a
segment of the stack in the EVM).
If the AST node is a statement, E returns the two state objects and a "mode",
which is used for the ``break`` and ``continue`` statements.
If the AST node is an expression, E returns the two state objects and
as many values as the expression evaluates to.
The exact nature of the global state is unspecified for this high level
description. The local state ``L`` is a mapping of identifiers ``i`` to values ``v``,
denoted as ``L[i] = v``.
For an identifier ``v``, let ``$v`` be the name of the identifier.
We will use a destructuring notation for the AST nodes.
.. code::
E(G, L, <{St1, ..., Stn}>: Block) =
let G1, L1, mode = E(G, L, St1, ..., Stn)
let L2 be a restriction of L1 to the identifiers of L
G1, L2, mode
E(G, L, St1, ..., Stn: Statement) =
if n is zero:
G, L, regular
else:
let G1, L1, mode = E(G, L, St1)
if mode is regular then
E(G1, L1, St2, ..., Stn)
otherwise
G1, L1, mode
E(G, L, FunctionDefinition) =
G, L, regular
E(G, L, <let var1, ..., varn := rhs>: VariableDeclaration) =
E(G, L, <var1, ..., varn := rhs>: Assignment)
E(G, L, <let var1, ..., varn>: VariableDeclaration) =
let L1 be a copy of L where L1[$vari] = 0 for i = 1, ..., n
G, L1, regular
E(G, L, <var1, ..., varn := rhs>: Assignment) =
let G1, L1, v1, ..., vn = E(G, L, rhs)
let L2 be a copy of L1 where L2[$vari] = vi for i = 1, ..., n
G, L2, regular
E(G, L, <for { i1, ..., in } condition post body>: ForLoop) =
if n >= 1:
let G1, L1, mode = E(G, L, i1, ..., in)
// mode has to be regular due to the syntactic restrictions
let G2, L2, mode = E(G1, L1, for {} condition post body)
// mode has to be regular due to the syntactic restrictions
let L3 be the restriction of L2 to only variables of L
G2, L3, regular
else:
let G1, L1, v = E(G, L, condition)
if v is false:
G1, L1, regular
else:
let G2, L2, mode = E(G1, L, body)
if mode is break:
G2, L2, regular
else:
G3, L3, mode = E(G2, L2, post)
E(G3, L3, for {} condition post body)
E(G, L, break: BreakContinue) =
G, L, break
E(G, L, continue: BreakContinue) =
G, L, continue
E(G, L, <name>: Identifier) =
G, L, L[$name]
E(G, L, <fname(arg1, ..., argn)>: FunctionCall) =
G1, L1, vn = E(G, L, argn)
...
G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
Let <function fname (param1, ..., paramn) -> ret1, ..., retm block>
be the function of name $fname visible at the point of the call.
Let L' be a new local state such that
L'[$parami] = vi and L'[$reti] = 0 for all i.
Let G'', L'', mode = E(Gn, L', block)
G'', Ln, L''[$ret1], ..., L''[$retm]
E(G, L, l: HexLiteral) = G, L, hexString(l),
where hexString decodes l from hex and left-aligns it into 32 bytes
E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
where utf8EncodeLeftAligned performs a utf8 encoding of l
and aligns it left into 32 bytes
E(G, L, n: HexNumber) = G, L, hex(n)
where hex is the hexadecimal decoding function
E(G, L, n: DecimalNumber) = G, L, dec(n),
where dec is the decimal decoding function
Type Conversion Functions
-------------------------
JULIA has no support for implicit type conversion and therefore functions exists to provide explicit conversion.
When converting a larger type to a shorter type a runtime exception can occur in case of an overflow.
The following type conversion functions must be available:
- ``u32tobool(x:u32) -> y:bool``
- ``booltou32(x:bool) -> y:u32``
- ``u32tou64(x:u32) -> y:u64``
- ``u64tou32(x:u64) -> y:u32``
- etc. (TBD)
Low-level Functions
-------------------
The following functions must be available:
+---------------------------------------------------------------------------------------------------------------+
| *Arithmetics* |
+---------------------------------------------------------------------------------------------------------------+
| addu256(x:u256, y:u256) -> z:u256 | x + y |
+---------------------------------------------------------------------------------------------------------------+
| subu256(x:u256, y:u256) -> z:u256 | x - y |
+---------------------------------------------------------------------------------------------------------------+
| mulu256(x:u256, y:u256) -> z:u256 | x * y |
+---------------------------------------------------------------------------------------------------------------+
| divu256(x:u256, y:u256) -> z:u256 | x / y |
+---------------------------------------------------------------------------------------------------------------+
| divs256(x:s256, y:s256) -> z:s256 | x / y, for signed numbers in two's complement |
+---------------------------------------------------------------------------------------------------------------+
| modu256(x:u256, y:u256) -> z:u256 | x % y |
+---------------------------------------------------------------------------------------------------------------+
| mods256(x:s256, y:s256) -> z:s256 | x % y, for signed numbers in two's complement |
+---------------------------------------------------------------------------------------------------------------+
| signextendu256(i:u256, x:u256) -> z:u256 | sign extend from (i*8+7)th bit counting from least significant |
+---------------------------------------------------------------------------------------------------------------+
| expu256(x:u256, y:u256) -> z:u256 | x to the power of y |
+---------------------------------------------------------------------------------------------------------------+
| addmodu256(x:u256, y:u256, m:u256) -> z:u256| (x + y) % m with arbitrary precision arithmetics |
+---------------------------------------------------------------------------------------------------------------+
| mulmodu256(x:u256, y:u256, m:u256) -> z:u256| (x * y) % m with arbitrary precision arithmetics |
+---------------------------------------------------------------------------------------------------------------+
| ltu256(x:u256, y:u256) -> z:bool | 1 if x < y, 0 otherwise |
+---------------------------------------------------------------------------------------------------------------+
| gtu256(x:u256, y:u256) -> z:bool | 1 if x > y, 0 otherwise |
+---------------------------------------------------------------------------------------------------------------+
| sltu256(x:s256, y:s256) -> z:bool | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
+---------------------------------------------------------------------------------------------------------------+
| sgtu256(x:s256, y:s256) -> z:bool | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
+---------------------------------------------------------------------------------------------------------------+
| equ256(x:u256, y:u256) -> z:bool | 1 if x == y, 0 otherwise |
+---------------------------------------------------------------------------------------------------------------+
| notu256(x:u256) -> z:u256 | ~x, every bit of x is negated |
+---------------------------------------------------------------------------------------------------------------+
| andu256(x:u256, y:u256) -> z:u256 | bitwise and of x and y |
+---------------------------------------------------------------------------------------------------------------+
| oru256(x:u256, y:u256) -> z:u256 | bitwise or of x and y |
+---------------------------------------------------------------------------------------------------------------+
| xoru256(x:u256, y:u256) -> z:u256 | bitwise xor of x and y |
+---------------------------------------------------------------------------------------------------------------+
| shlu256(x:u256, y:u256) -> z:u256 | logical left shift of x by y |
+---------------------------------------------------------------------------------------------------------------+
| shru256(x:u256, y:u256) -> z:u256 | logical right shift of x by y |
+---------------------------------------------------------------------------------------------------------------+
| saru256(x:u256, y:u256) -> z:u256 | arithmetic right shift of x by y |
+---------------------------------------------------------------------------------------------------------------+
| byte(n:u256, x:u256) -> v:u256 | nth byte of x, where the most significant byte is the 0th byte |
| Cannot this be just replaced by and256(shr256(n, x), 0xff) and let it be optimised out by the EVM backend? |
+---------------------------------------------------------------------------------------------------------------+
| *Memory and storage* |
+---------------------------------------------------------------------------------------------------------------+
| mload(p:u256) -> v:u256 | mem[p..(p+32)) |
+---------------------------------------------------------------------------------------------------------------+
| mstore(p:u256, v:u256) | mem[p..(p+32)) := v |
+---------------------------------------------------------------------------------------------------------------+
| mstore8(p:u256, v:u256) | mem[p] := v & 0xff - only modifies a single byte |
+---------------------------------------------------------------------------------------------------------------+
| sload(p:u256) -> v:u256 | storage[p] |
+---------------------------------------------------------------------------------------------------------------+
| sstore(p:u256, v:u256) | storage[p] := v |
+---------------------------------------------------------------------------------------------------------------+
| msize() -> size:u256 | size of memory, i.e. largest accessed memory index, albeit due |
| | due to the memory extension function, which extends by words, |
| | this will always be a multiple of 32 bytes |
+---------------------------------------------------------------------------------------------------------------+
| *Execution control* |
+---------------------------------------------------------------------------------------------------------------+
| create(v:u256, p:u256, s:u256) | create new contract with code mem[p..(p+s)) and send v wei |
| | and return the new address |
+---------------------------------------------------------------------------------------------------------------+
| call(g:u256, a:u256, v:u256, in:u256, | call contract at address a with input mem[in..(in+insize)) |
| insize:u256, out:u256, | providing g gas and v wei and output area |
| outsize:u256) | mem[out..(out+outsize)) returning 0 on error (eg. out of gas) |
| -> r:u256 | and 1 on success |
+---------------------------------------------------------------------------------------------------------------+
| callcode(g:u256, a:u256, v:u256, in:u256, | identical to ``call`` but only use the code from a |
| insize:u256, out:u256, | and stay in the context of the |
| outsize:u256) -> r:u256 | current contract otherwise |
+---------------------------------------------------------------------------------------------------------------+
| delegatecall(g:u256, a:u256, in:u256, | identical to ``callcode``, |
| insize:u256, out:u256, | but also keep ``caller`` |
| outsize:u256) -> r:u256 | and ``callvalue`` |
+---------------------------------------------------------------------------------------------------------------+
| stop() | stop execution, identical to return(0,0) |
| Perhaps it would make sense retiring this as it equals to return(0,0). It can be an optimisation by the EVM |
| backend. |
+---------------------------------------------------------------------------------------------------------------+
| abort() | abort (equals to invalid instruction on EVM) |
+---------------------------------------------------------------------------------------------------------------+
| return(p:u256, s:u256) | end execution, return data mem[p..(p+s)) |
+---------------------------------------------------------------------------------------------------------------+
| revert(p:u256, s:u256) | end execution, revert state changes, return data mem[p..(p+s)) |
+---------------------------------------------------------------------------------------------------------------+
| selfdestruct(a:u256) | end execution, destroy current contract and send funds to a |
+---------------------------------------------------------------------------------------------------------------+
| log0(p:u256, s:u256) | log without topics and data mem[p..(p+s)) |
+---------------------------------------------------------------------------------------------------------------+
| log1(p:u256, s:u256, t1:u256) | log with topic t1 and data mem[p..(p+s)) |
+---------------------------------------------------------------------------------------------------------------+
| log2(p:u256, s:u256, t1:u256, t2:u256) | log with topics t1, t2 and data mem[p..(p+s)) |
+---------------------------------------------------------------------------------------------------------------+
| log3(p:u256, s:u256, t1:u256, t2:u256, | log with topics t, t2, t3 and data mem[p..(p+s)) |
| t3:u256) | |
+---------------------------------------------------------------------------------------------------------------+
| log4(p:u256, s:u256, t1:u256, t2:u256, | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
| t3:u256, t4:u256) | |
+---------------------------------------------------------------------------------------------------------------+
| *State queries* |
+---------------------------------------------------------------------------------------------------------------+
| blockcoinbase() -> address:u256 | current mining beneficiary |
+---------------------------------------------------------------------------------------------------------------+
| blockdifficulty() -> difficulty:u256 | difficulty of the current block |
+---------------------------------------------------------------------------------------------------------------+
| blockgaslimit() -> limit:u256 | block gas limit of the current block |
+---------------------------------------------------------------------------------------------------------------+
| blockhash(b:u256) -> hash:u256 | hash of block nr b - only for last 256 blocks excluding current |
+---------------------------------------------------------------------------------------------------------------+
| blocknumber() -> block:u256 | current block number |
+---------------------------------------------------------------------------------------------------------------+
| blocktimestamp() -> timestamp:u256 | timestamp of the current block in seconds since the epoch |
+---------------------------------------------------------------------------------------------------------------+
| txorigin() -> address:u256 | transaction sender |
+---------------------------------------------------------------------------------------------------------------+
| txgasprice() -> price:u256 | gas price of the transaction |
+---------------------------------------------------------------------------------------------------------------+
| gasleft() -> gas:u256 | gas still available to execution |
+---------------------------------------------------------------------------------------------------------------+
| balance(a:u256) -> v:u256 | wei balance at address a |
+---------------------------------------------------------------------------------------------------------------+
| this() -> address:u256 | address of the current contract / execution context |
+---------------------------------------------------------------------------------------------------------------+
| caller() -> address:u256 | call sender (excluding delegatecall) |
+---------------------------------------------------------------------------------------------------------------+
| callvalue() -> v:u256 | wei sent together with the current call |
+---------------------------------------------------------------------------------------------------------------+
| calldataload(p:u256) -> v:u256 | call data starting from position p (32 bytes) |
+---------------------------------------------------------------------------------------------------------------+
| calldatasize() -> v:u256 | size of call data in bytes |
+---------------------------------------------------------------------------------------------------------------+
| calldatacopy(t:u256, f:u256, s:u256) | copy s bytes from calldata at position f to mem at position t |
+---------------------------------------------------------------------------------------------------------------+
| codesize() -> size:u256 | size of the code of the current contract / execution context |
+---------------------------------------------------------------------------------------------------------------+
| codecopy(t:u256, f:u256, s:u256) | copy s bytes from code at position f to mem at position t |
+---------------------------------------------------------------------------------------------------------------+
| extcodesize(a:u256) -> size:u256 | size of the code at address a |
+---------------------------------------------------------------------------------------------------------------+
| extcodecopy(a:u256, t:u256, f:u256, s:u256) | like codecopy(t, f, s) but take code at address a |
+---------------------------------------------------------------------------------------------------------------+
| *Others* |
+---------------------------------------------------------------------------------------------------------------+
| discardu256(unused:u256) | discard value |
+---------------------------------------------------------------------------------------------------------------+
| splitu256tou64(x:u256) -> (x1:u64, x2:u64, | split u256 to four u64's |
| x3:u64, x4:u64) | |
+---------------------------------------------------------------------------------------------------------------+
| combineu64tou256(x1:u64, x2:u64, x3:u64, | combine four u64's into a single u256 |
| x4:u64) -> (x:u256) | |
+---------------------------------------------------------------------------------------------------------------+
| sha3(p:u256, s:u256) -> v:u256 | keccak(mem[p...(p+s))) |
+---------------------------------------------------------------------------------------------------------------+
Backends
--------
Backends or targets are the translators from JULIA to a specific bytecode. Each of the backends can expose functions
prefixed with the name of the backend. We reserve ``evm_`` and ``ewasm_`` prefixes for the two proposed backends.
Backend: EVM
------------
The EVM target will have all the underlying EVM opcodes exposed with the `evm_` prefix.
Backend: "EVM 1.5"
------------------
TBD
Backend: eWASM
--------------
TBD
Specification of JULIA Object
=============================
Grammar::
TopLevelObject = 'object' '{' Code? ( Object | Data )* '}'
Object = 'object' StringLiteral '{' Code? ( Object | Data )* '}'
Code = 'code' Block
Data = 'data' StringLiteral HexLiteral
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
Above, ``Block`` refers to ``Block`` in the JULIA code grammar explained in the previous chapter.
An example JULIA Object is shown below:
..code::
// Code consists of a single object. A single "code" node is the code of the object.
// Every (other) named object or data section is serialized and
// made accessible to the special built-in functions datacopy / dataoffset / datasize
object {
code {
let size = datasize("runtime")
let offset = allocate(size)
// This will turn into a memory->memory copy for eWASM and
// a codecopy for EVM
datacopy(dataoffset("runtime"), offset, size)
// this is a constructor and the runtime code is returned
return(offset, size)
}
data "Table2" hex"4123"
object "runtime" {
code {
// runtime code
let size = datasize("Contract2")
let offset = allocate(size)
// This will turn into a memory->memory copy for eWASM and
// a codecopy for EVM
datacopy(dataoffset("Contract2"), offset, size)
// constructor parameter is a single number 0x1234
mstore(add(offset, size), 0x1234)
create(offset, add(size, 32))
}
// Embedded object. Use case is that the outside is a factory contract,
// and Contract2 is the code to be created by the factory
object "Contract2" {
code {
// code here ...
}
object "runtime" {
code {
// code here ...
}
}
data "Table1" hex"4123"
}
}
}
|