1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file CodeFragment.cpp
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#include "CodeFragment.h"
#include <boost/algorithm/string.hpp>
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif // defined(__GNUC__)
#include <boost/spirit/include/support_utree.hpp>
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif // defined(__GNUC__)
#include <libdevcore/CommonIO.h>
#include <libevmasm/Instruction.h>
#include "CompilerState.h"
#include "Parser.h"
using namespace std;
using namespace dev;
using namespace dev::lll;
void CodeFragment::finalise(CompilerState const& _cs)
{
if (_cs.usedAlloc && _cs.vars.size() && !m_finalised)
{
m_finalised = true;
m_asm.injectStart(Instruction::MSTORE8);
m_asm.injectStart((u256)((_cs.vars.size() + 2) * 32) - 1);
m_asm.injectStart((u256)1);
}
}
namespace
{
/// Returns true iff the instruction is valid in "inline assembly".
bool validAssemblyInstruction(string us)
{
auto it = c_instructions.find(us);
return !(
it == c_instructions.end() ||
solidity::isPushInstruction(it->second)
);
}
/// Returns true iff the instruction is valid as a function.
bool validFunctionalInstruction(string us)
{
auto it = c_instructions.find(us);
return !(
it == c_instructions.end() ||
solidity::isPushInstruction(it->second) ||
solidity::isDupInstruction(it->second) ||
solidity::isSwapInstruction(it->second) ||
it->second == solidity::Instruction::JUMPDEST
);
}
}
CodeFragment::CodeFragment(sp::utree const& _t, CompilerState& _s, ReadCallback const& _readFile, bool _allowASM):
m_readFile(_readFile)
{
/*
std::cout << "CodeFragment. Locals:";
for (auto const& i: _s.defs)
std::cout << i.first << ":" << i.second.m_asm.out();
std::cout << "Args:";
for (auto const& i: _s.args)
std::cout << i.first << ":" << i.second.m_asm.out();
std::cout << "Outers:";
for (auto const& i: _s.outers)
std::cout << i.first << ":" << i.second.m_asm.out();
debugOutAST(std::cout, _t);
std::cout << endl << flush;
*/
switch (_t.which())
{
case sp::utree_type::list_type:
constructOperation(_t, _s);
break;
case sp::utree_type::string_type:
{
auto sr = _t.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::string_type>>();
string s(sr.begin(), sr.end());
m_asm.append(s);
break;
}
case sp::utree_type::symbol_type:
{
auto sr = _t.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::symbol_type>>();
string s(sr.begin(), sr.end());
string us = boost::algorithm::to_upper_copy(s);
if (_allowASM && c_instructions.count(us) && validAssemblyInstruction(us))
m_asm.append(c_instructions.at(us));
else if (_s.defs.count(s))
m_asm.append(_s.defs.at(s).m_asm);
else if (_s.args.count(s))
m_asm.append(_s.args.at(s).m_asm);
else if (_s.outers.count(s))
m_asm.append(_s.outers.at(s).m_asm);
else if (us.find_first_of("1234567890") != 0 && us.find_first_not_of("QWERTYUIOPASDFGHJKLZXCVBNM1234567890_-") == string::npos)
{
auto it = _s.vars.find(s);
if (it == _s.vars.end())
error<InvalidName>(std::string("Symbol not found: ") + s);
m_asm.append((u256)it->second.first);
}
else
error<BareSymbol>(s);
break;
}
case sp::utree_type::any_type:
{
bigint i = *_t.get<bigint*>();
if (i < 0 || i > bigint(u256(0) - 1))
error<IntegerOutOfRange>(toString(i));
m_asm.append((u256)i);
break;
}
default:
error<CompilerException>("Unexpected fragment type");
break;
}
}
void CodeFragment::constructOperation(sp::utree const& _t, CompilerState& _s)
{
if (_t.tag() == 0 && _t.empty())
error<EmptyList>();
else if (_t.tag() == 0 && _t.front().which() != sp::utree_type::symbol_type)
error<DataNotExecutable>();
else
{
string s;
string us;
switch (_t.tag())
{
case 0:
{
auto sr = _t.front().get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::symbol_type>>();
s = string(sr.begin(), sr.end());
us = boost::algorithm::to_upper_copy(s);
break;
}
case 1:
us = "MLOAD";
break;
case 2:
us = "SLOAD";
break;
case 3:
us = "MSTORE";
break;
case 4:
us = "SSTORE";
break;
case 5:
us = "SEQ";
break;
case 6:
us = "CALLDATALOAD";
break;
default:;
}
auto firstAsString = [&]()
{
auto i = *++_t.begin();
if (i.tag())
error<InvalidName>(toString(i));
if (i.which() == sp::utree_type::string_type)
{
auto sr = i.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::string_type>>();
return string(sr.begin(), sr.end());
}
else if (i.which() == sp::utree_type::symbol_type)
{
auto sr = i.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::symbol_type>>();
return _s.getDef(string(sr.begin(), sr.end())).m_asm.backString();
}
return string();
};
auto varAddress = [&](string const& n, bool createMissing = false)
{
if (n.empty())
error<InvalidName>("Empty variable name not allowed");
auto it = _s.vars.find(n);
if (it == _s.vars.end())
{
if (createMissing)
{
// Create new variable
bool ok;
tie(it, ok) = _s.vars.insert(make_pair(n, make_pair(_s.stackSize, 32)));
_s.stackSize += 32;
}
else
error<InvalidName>(std::string("Symbol not found: ") + n);
}
return it->second.first;
};
// Operations who args are not standard stack-pushers.
bool nonStandard = true;
if (us == "ASM")
{
int c = 0;
for (auto const& i: _t)
if (c++)
m_asm.append(CodeFragment(i, _s, m_readFile, true).m_asm);
}
else if (us == "INCLUDE")
{
if (_t.size() != 2)
error<IncorrectParameterCount>(us);
string fileName = firstAsString();
if (fileName.empty())
error<InvalidName>("Empty file name provided");
if (!m_readFile)
error<InvalidName>("Import callback not present");
string contents = m_readFile(fileName);
if (contents.empty())
error<InvalidName>(std::string("File not found (or empty): ") + fileName);
m_asm.append(CodeFragment::compile(contents, _s, m_readFile).m_asm);
}
else if (us == "SET")
{
if (_t.size() != 3)
error<IncorrectParameterCount>(us);
int c = 0;
for (auto const& i: _t)
if (c++ == 2)
m_asm.append(CodeFragment(i, _s, m_readFile, false).m_asm);
m_asm.append((u256)varAddress(firstAsString(), true));
m_asm.append(Instruction::MSTORE);
}
else if (us == "GET")
{
if (_t.size() != 2)
error<IncorrectParameterCount>(us);
m_asm.append((u256)varAddress(firstAsString()));
m_asm.append(Instruction::MLOAD);
}
else if (us == "REF")
m_asm.append((u256)varAddress(firstAsString()));
else if (us == "DEF")
{
string n;
unsigned ii = 0;
if (_t.size() != 3 && _t.size() != 4)
error<IncorrectParameterCount>(us);
vector<string> args;
for (auto const& i: _t)
{
if (ii == 1)
{
if (i.tag())
error<InvalidName>(toString(i));
if (i.which() == sp::utree_type::string_type)
{
auto sr = i.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::string_type>>();
n = string(sr.begin(), sr.end());
}
else if (i.which() == sp::utree_type::symbol_type)
{
auto sr = i.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::symbol_type>>();
n = _s.getDef(string(sr.begin(), sr.end())).m_asm.backString();
}
}
else if (ii == 2)
if (_t.size() == 3)
{
/// NOTE: some compilers could do the assignment first if this is done in a single line
CodeFragment code = CodeFragment(i, _s, m_readFile);
_s.defs[n] = code;
}
else
for (auto const& j: i)
{
if (j.tag() || j.which() != sp::utree_type::symbol_type)
error<InvalidMacroArgs>();
auto sr = j.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::symbol_type>>();
args.push_back(string(sr.begin(), sr.end()));
}
else if (ii == 3)
{
auto k = make_pair(n, args.size());
_s.macros[k].code = i;
_s.macros[k].env = _s.outers;
_s.macros[k].args = args;
for (auto const& i: _s.args)
_s.macros[k].env[i.first] = i.second;
for (auto const& i: _s.defs)
_s.macros[k].env[i.first] = i.second;
}
++ii;
}
}
else if (us == "LIT")
{
if (_t.size() < 3)
error<IncorrectParameterCount>(us);
unsigned ii = 0;
CodeFragment pos;
bytes data;
for (auto const& i: _t)
{
if (ii == 0)
{
ii++;
continue;
}
else if (ii == 1)
{
pos = CodeFragment(i, _s, m_readFile);
if (pos.m_asm.deposit() != 1)
error<InvalidDeposit>(toString(i));
}
else if (i.tag() != 0)
{
error<InvalidLiteral>(toString(i));
}
else if (i.which() == sp::utree_type::string_type)
{
auto sr = i.get<sp::basic_string<boost::iterator_range<char const*>, sp::utree_type::string_type>>();
data.insert(data.end(), (uint8_t const *)sr.begin(), (uint8_t const*)sr.end());
}
else if (i.which() == sp::utree_type::any_type)
{
bigint bi = *i.get<bigint*>();
if (bi < 0)
error<IntegerOutOfRange>(toString(i));
else
{
bytes tmp = toCompactBigEndian(bi);
data.insert(data.end(), tmp.begin(), tmp.end());
}
}
else
{
error<InvalidLiteral>(toString(i));
}
ii++;
}
m_asm.append((u256)data.size());
m_asm.append(Instruction::DUP1);
m_asm.append(data);
m_asm.append(pos.m_asm, 1);
m_asm.append(Instruction::CODECOPY);
}
else
nonStandard = false;
if (nonStandard)
return;
std::map<std::string, Instruction> const c_arith = {
{ "+", Instruction::ADD },
{ "-", Instruction::SUB },
{ "*", Instruction::MUL },
{ "/", Instruction::DIV },
{ "%", Instruction::MOD },
{ "&", Instruction::AND },
{ "|", Instruction::OR },
{ "^", Instruction::XOR }
};
std::map<std::string, pair<Instruction, bool>> const c_binary = {
{ "<", { Instruction::LT, false } },
{ "<=", { Instruction::GT, true } },
{ ">", { Instruction::GT, false } },
{ ">=", { Instruction::LT, true } },
{ "S<", { Instruction::SLT, false } },
{ "S<=", { Instruction::SGT, true } },
{ "S>", { Instruction::SGT, false } },
{ "S>=", { Instruction::SLT, true } },
{ "=", { Instruction::EQ, false } },
{ "!=", { Instruction::EQ, true } }
};
std::map<std::string, Instruction> const c_unary = {
{ "!", Instruction::ISZERO },
{ "~", Instruction::NOT }
};
vector<CodeFragment> code;
CompilerState ns = _s;
ns.vars.clear();
ns.usedAlloc = false;
int c = _t.tag() ? 1 : 0;
for (auto const& i: _t)
if (c++)
{
if (us == "LLL" && c == 1)
code.push_back(CodeFragment(i, ns, m_readFile));
else
code.push_back(CodeFragment(i, _s, m_readFile));
}
auto requireSize = [&](unsigned s) { if (code.size() != s) error<IncorrectParameterCount>(us); };
auto requireMinSize = [&](unsigned s) { if (code.size() < s) error<IncorrectParameterCount>(us); };
auto requireMaxSize = [&](unsigned s) { if (code.size() > s) error<IncorrectParameterCount>(us); };
auto requireDeposit = [&](unsigned i, int s) { if (code[i].m_asm.deposit() != s) error<InvalidDeposit>(us); };
if (_s.macros.count(make_pair(s, code.size())))
{
Macro const& m = _s.macros.at(make_pair(s, code.size()));
CompilerState cs = _s;
for (auto const& i: m.env)
cs.outers[i.first] = i.second;
for (auto const& i: cs.defs)
cs.outers[i.first] = i.second;
cs.defs.clear();
for (unsigned i = 0; i < m.args.size(); ++i)
{
//requireDeposit(i, 1);
cs.args[m.args[i]] = code[i];
}
m_asm.append(CodeFragment(m.code, cs, m_readFile).m_asm);
for (auto const& i: cs.defs)
_s.defs[i.first] = i.second;
for (auto const& i: cs.macros)
_s.macros.insert(i);
}
else if (c_instructions.count(us) && validFunctionalInstruction(us))
{
auto it = c_instructions.find(us);
requireSize(instructionInfo(it->second).args);
for (unsigned i = code.size(); i; --i)
m_asm.append(code[i - 1].m_asm, 1);
m_asm.append(it->second);
}
else if (c_arith.count(us))
{
auto it = c_arith.find(us);
requireMinSize(1);
for (unsigned i = code.size(); i; --i)
{
requireDeposit(i - 1, 1);
m_asm.append(code[i - 1].m_asm, 1);
}
for (unsigned i = 1; i < code.size(); ++i)
m_asm.append(it->second);
}
else if (c_binary.count(us))
{
auto it = c_binary.find(us);
requireSize(2);
requireDeposit(0, 1);
requireDeposit(1, 1);
m_asm.append(code[1].m_asm, 1);
m_asm.append(code[0].m_asm, 1);
m_asm.append(it->second.first);
if (it->second.second)
m_asm.append(Instruction::ISZERO);
}
else if (c_unary.count(us))
{
auto it = c_unary.find(us);
requireSize(1);
requireDeposit(0, 1);
m_asm.append(code[0].m_asm, 1);
m_asm.append(it->second);
}
else if (us == "IF")
{
requireSize(3);
requireDeposit(0, 1);
int minDep = min(code[1].m_asm.deposit(), code[2].m_asm.deposit());
m_asm.append(code[0].m_asm);
auto mainBranch = m_asm.appendJumpI();
/// The else branch.
int startDeposit = m_asm.deposit();
m_asm.append(code[2].m_asm, minDep);
auto end = m_asm.appendJump();
int deposit = m_asm.deposit();
m_asm.setDeposit(startDeposit);
/// The main branch.
m_asm << mainBranch.tag();
m_asm.append(code[1].m_asm, minDep);
m_asm << end.tag();
if (m_asm.deposit() != deposit)
error<InvalidDeposit>(us);
}
else if (us == "WHEN" || us == "UNLESS")
{
requireSize(2);
requireDeposit(0, 1);
m_asm.append(code[0].m_asm);
if (us == "WHEN")
m_asm.append(Instruction::ISZERO);
auto end = m_asm.appendJumpI();
m_asm.append(code[1].m_asm, 0);
m_asm << end.tag();
}
else if (us == "WHILE" || us == "UNTIL")
{
requireSize(2);
requireDeposit(0, 1);
auto begin = m_asm.append(m_asm.newTag());
m_asm.append(code[0].m_asm);
if (us == "WHILE")
m_asm.append(Instruction::ISZERO);
auto end = m_asm.appendJumpI();
m_asm.append(code[1].m_asm, 0);
m_asm.appendJump(begin);
m_asm << end.tag();
}
else if (us == "FOR")
{
requireSize(4);
requireDeposit(1, 1);
m_asm.append(code[0].m_asm, 0);
auto begin = m_asm.append(m_asm.newTag());
m_asm.append(code[1].m_asm);
m_asm.append(Instruction::ISZERO);
auto end = m_asm.appendJumpI();
m_asm.append(code[3].m_asm, 0);
m_asm.append(code[2].m_asm, 0);
m_asm.appendJump(begin);
m_asm << end.tag();
}
else if (us == "SWITCH")
{
requireMinSize(1);
bool hasDefault = (code.size() % 2 == 1);
int startDeposit = m_asm.deposit();
int targetDeposit = hasDefault ? code[code.size() - 1].m_asm.deposit() : 0;
// The conditions
eth::AssemblyItems jumpTags;
for (unsigned i = 0; i < code.size() - 1; i += 2)
{
requireDeposit(i, 1);
m_asm.append(code[i].m_asm);
jumpTags.push_back(m_asm.appendJumpI());
}
// The default, if present
if (hasDefault)
m_asm.append(code[code.size() - 1].m_asm);
// The targets - appending in reverse makes the top case the most efficient.
if (code.size() > 1)
{
auto end = m_asm.appendJump();
for (int i = 2 * (code.size() / 2 - 1); i >= 0; i -= 2)
{
m_asm << jumpTags[i / 2].tag();
requireDeposit(i + 1, targetDeposit);
m_asm.append(code[i + 1].m_asm);
if (i != 0)
m_asm.appendJump(end);
}
m_asm << end.tag();
}
m_asm.setDeposit(startDeposit + targetDeposit);
}
else if (us == "ALLOC")
{
requireSize(1);
requireDeposit(0, 1);
// (alloc N):
// - Evaluates to (msize) before the allocation - the start of the allocated memory
// - Does not allocate memory when N is zero
// - Size of memory allocated is N bytes rounded up to a multiple of 32
// - Uses MLOAD to expand MSIZE to avoid modifying memory.
auto end = m_asm.newTag();
m_asm.append(Instruction::MSIZE); // Result will be original top of memory
m_asm.append(code[0].m_asm, 1); // The alloc argument N
m_asm.append(Instruction::DUP1);
m_asm.append(Instruction::ISZERO);// (alloc 0) does not change MSIZE
m_asm.appendJumpI(end);
m_asm.append(u256(1));
m_asm.append(Instruction::DUP2); // Copy N
m_asm.append(Instruction::SUB); // N-1
m_asm.append(u256(0x1f)); // Bit mask
m_asm.append(Instruction::NOT); // Invert
m_asm.append(Instruction::AND); // Align N-1 on 32 byte boundary
m_asm.append(Instruction::MSIZE); // MSIZE is cheap
m_asm.append(Instruction::ADD);
m_asm.append(Instruction::MLOAD); // Updates MSIZE
m_asm.append(Instruction::POP); // Discard the result of the MLOAD
m_asm.append(end);
m_asm.append(Instruction::POP); // Discard duplicate N
_s.usedAlloc = true;
}
else if (us == "LLL")
{
requireMinSize(2);
requireMaxSize(3);
requireDeposit(1, 1);
auto subPush = m_asm.appendSubroutine(make_shared<eth::Assembly>(code[0].assembly(ns)));
m_asm.append(Instruction::DUP1);
if (code.size() == 3)
{
requireDeposit(2, 1);
m_asm.append(code[2].m_asm, 1);
m_asm.append(Instruction::LT);
m_asm.append(Instruction::ISZERO);
m_asm.append(Instruction::MUL);
m_asm.append(Instruction::DUP1);
}
m_asm.append(subPush);
m_asm.append(code[1].m_asm, 1);
m_asm.append(Instruction::CODECOPY);
}
else if (us == "&&" || us == "||")
{
requireMinSize(1);
for (unsigned i = 0; i < code.size(); ++i)
requireDeposit(i, 1);
auto end = m_asm.newTag();
if (code.size() > 1)
{
m_asm.append((u256)(us == "||" ? 1 : 0));
for (unsigned i = 1; i < code.size(); ++i)
{
// Check if true - predicate
m_asm.append(code[i - 1].m_asm, 1);
if (us == "&&")
m_asm.append(Instruction::ISZERO);
m_asm.appendJumpI(end);
}
m_asm.append(Instruction::POP);
}
// Check if true - predicate
m_asm.append(code.back().m_asm, 1);
// At end now.
m_asm.append(end);
}
else if (us == "SEQ")
{
unsigned ii = 0;
for (auto const& i: code)
if (++ii < code.size())
m_asm.append(i.m_asm, 0);
else
m_asm.append(i.m_asm);
}
else if (us == "RAW")
{
for (auto const& i: code)
m_asm.append(i.m_asm);
// Leave only the last item on stack.
while (m_asm.deposit() > 1)
m_asm.append(Instruction::POP);
}
else if (us == "BYTECODESIZE")
{
m_asm.appendProgramSize();
}
else if (us.find_first_of("1234567890") != 0 && us.find_first_not_of("QWERTYUIOPASDFGHJKLZXCVBNM1234567890_-") == string::npos)
m_asm.append((u256)varAddress(s));
else
error<InvalidOperation>("Unsupported keyword: '" + us + "'");
}
}
CodeFragment CodeFragment::compile(string const& _src, CompilerState& _s, ReadCallback const& _readFile)
{
CodeFragment ret;
sp::utree o;
parseTreeLLL(_src, o);
if (!o.empty())
ret = CodeFragment(o, _s, _readFile);
_s.treesToKill.push_back(o);
return ret;
}
|