aboutsummaryrefslogtreecommitdiffstats
path: root/crypto
diff options
context:
space:
mode:
authorPéter Szilágyi <peterke@gmail.com>2015-06-03 17:00:39 +0800
committerPéter Szilágyi <peterke@gmail.com>2015-06-03 17:00:39 +0800
commit14e7192d9c2de76c1eff151cc25eec73babfb61a (patch)
tree26b291c5e9f70279eac27ae7624135b3b4ee643b /crypto
parent9085b10508f1a3a5830549037f033ca58d184a0e (diff)
downloaddexon-14e7192d9c2de76c1eff151cc25eec73babfb61a.tar.gz
dexon-14e7192d9c2de76c1eff151cc25eec73babfb61a.tar.zst
dexon-14e7192d9c2de76c1eff151cc25eec73babfb61a.zip
crypto/sha3: pull in latest keccak from go crypto (45% speed increase)
Diffstat (limited to 'crypto')
-rw-r--r--crypto/sha3/keccakf.go563
-rw-r--r--crypto/sha3/sha3.go19
2 files changed, 409 insertions, 173 deletions
diff --git a/crypto/sha3/keccakf.go b/crypto/sha3/keccakf.go
index 3baf13ba3..13e7058fa 100644
--- a/crypto/sha3/keccakf.go
+++ b/crypto/sha3/keccakf.go
@@ -1,171 +1,410 @@
-// Copyright 2013 The Go Authors. All rights reserved.
+// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
-// This file implements the core Keccak permutation function necessary for computing SHA3.
-// This is implemented in a separate file to allow for replacement by an optimized implementation.
-// Nothing in this package is exported.
-// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/).
-
// rc stores the round constants for use in the ι step.
-var rc = [...]uint64{
- 0x0000000000000001,
- 0x0000000000008082,
- 0x800000000000808A,
- 0x8000000080008000,
- 0x000000000000808B,
- 0x0000000080000001,
- 0x8000000080008081,
- 0x8000000000008009,
- 0x000000000000008A,
- 0x0000000000000088,
- 0x0000000080008009,
- 0x000000008000000A,
- 0x000000008000808B,
- 0x800000000000008B,
- 0x8000000000008089,
- 0x8000000000008003,
- 0x8000000000008002,
- 0x8000000000000080,
- 0x000000000000800A,
- 0x800000008000000A,
- 0x8000000080008081,
- 0x8000000000008080,
- 0x0000000080000001,
- 0x8000000080008008,
+var rc = [24]uint64{
+ 0x0000000000000001,
+ 0x0000000000008082,
+ 0x800000000000808A,
+ 0x8000000080008000,
+ 0x000000000000808B,
+ 0x0000000080000001,
+ 0x8000000080008081,
+ 0x8000000000008009,
+ 0x000000000000008A,
+ 0x0000000000000088,
+ 0x0000000080008009,
+ 0x000000008000000A,
+ 0x000000008000808B,
+ 0x800000000000008B,
+ 0x8000000000008089,
+ 0x8000000000008003,
+ 0x8000000000008002,
+ 0x8000000000000080,
+ 0x000000000000800A,
+ 0x800000008000000A,
+ 0x8000000080008081,
+ 0x8000000000008080,
+ 0x0000000080000001,
+ 0x8000000080008008,
}
-// ro_xx represent the rotation offsets for use in the χ step.
-// Defining them as const instead of in an array allows the compiler to insert constant shifts.
-const (
- ro_00 = 0
- ro_01 = 36
- ro_02 = 3
- ro_03 = 41
- ro_04 = 18
- ro_05 = 1
- ro_06 = 44
- ro_07 = 10
- ro_08 = 45
- ro_09 = 2
- ro_10 = 62
- ro_11 = 6
- ro_12 = 43
- ro_13 = 15
- ro_14 = 61
- ro_15 = 28
- ro_16 = 55
- ro_17 = 25
- ro_18 = 21
- ro_19 = 56
- ro_20 = 27
- ro_21 = 20
- ro_22 = 39
- ro_23 = 8
- ro_24 = 14
-)
-
-// keccakF computes the complete Keccak-f function consisting of 24 rounds with a different
-// constant (rc) in each round. This implementation fully unrolls the round function to avoid
-// inner loops, as well as pre-calculating shift offsets.
-func (d *digest) keccakF() {
- for _, roundConstant := range rc {
- // θ step
- d.c[0] = d.a[0] ^ d.a[5] ^ d.a[10] ^ d.a[15] ^ d.a[20]
- d.c[1] = d.a[1] ^ d.a[6] ^ d.a[11] ^ d.a[16] ^ d.a[21]
- d.c[2] = d.a[2] ^ d.a[7] ^ d.a[12] ^ d.a[17] ^ d.a[22]
- d.c[3] = d.a[3] ^ d.a[8] ^ d.a[13] ^ d.a[18] ^ d.a[23]
- d.c[4] = d.a[4] ^ d.a[9] ^ d.a[14] ^ d.a[19] ^ d.a[24]
-
- d.d[0] = d.c[4] ^ (d.c[1]<<1 ^ d.c[1]>>63)
- d.d[1] = d.c[0] ^ (d.c[2]<<1 ^ d.c[2]>>63)
- d.d[2] = d.c[1] ^ (d.c[3]<<1 ^ d.c[3]>>63)
- d.d[3] = d.c[2] ^ (d.c[4]<<1 ^ d.c[4]>>63)
- d.d[4] = d.c[3] ^ (d.c[0]<<1 ^ d.c[0]>>63)
-
- d.a[0] ^= d.d[0]
- d.a[1] ^= d.d[1]
- d.a[2] ^= d.d[2]
- d.a[3] ^= d.d[3]
- d.a[4] ^= d.d[4]
- d.a[5] ^= d.d[0]
- d.a[6] ^= d.d[1]
- d.a[7] ^= d.d[2]
- d.a[8] ^= d.d[3]
- d.a[9] ^= d.d[4]
- d.a[10] ^= d.d[0]
- d.a[11] ^= d.d[1]
- d.a[12] ^= d.d[2]
- d.a[13] ^= d.d[3]
- d.a[14] ^= d.d[4]
- d.a[15] ^= d.d[0]
- d.a[16] ^= d.d[1]
- d.a[17] ^= d.d[2]
- d.a[18] ^= d.d[3]
- d.a[19] ^= d.d[4]
- d.a[20] ^= d.d[0]
- d.a[21] ^= d.d[1]
- d.a[22] ^= d.d[2]
- d.a[23] ^= d.d[3]
- d.a[24] ^= d.d[4]
-
- // ρ and π steps
- d.b[0] = d.a[0]
- d.b[1] = d.a[6]<<ro_06 ^ d.a[6]>>(64-ro_06)
- d.b[2] = d.a[12]<<ro_12 ^ d.a[12]>>(64-ro_12)
- d.b[3] = d.a[18]<<ro_18 ^ d.a[18]>>(64-ro_18)
- d.b[4] = d.a[24]<<ro_24 ^ d.a[24]>>(64-ro_24)
- d.b[5] = d.a[3]<<ro_15 ^ d.a[3]>>(64-ro_15)
- d.b[6] = d.a[9]<<ro_21 ^ d.a[9]>>(64-ro_21)
- d.b[7] = d.a[10]<<ro_02 ^ d.a[10]>>(64-ro_02)
- d.b[8] = d.a[16]<<ro_08 ^ d.a[16]>>(64-ro_08)
- d.b[9] = d.a[22]<<ro_14 ^ d.a[22]>>(64-ro_14)
- d.b[10] = d.a[1]<<ro_05 ^ d.a[1]>>(64-ro_05)
- d.b[11] = d.a[7]<<ro_11 ^ d.a[7]>>(64-ro_11)
- d.b[12] = d.a[13]<<ro_17 ^ d.a[13]>>(64-ro_17)
- d.b[13] = d.a[19]<<ro_23 ^ d.a[19]>>(64-ro_23)
- d.b[14] = d.a[20]<<ro_04 ^ d.a[20]>>(64-ro_04)
- d.b[15] = d.a[4]<<ro_20 ^ d.a[4]>>(64-ro_20)
- d.b[16] = d.a[5]<<ro_01 ^ d.a[5]>>(64-ro_01)
- d.b[17] = d.a[11]<<ro_07 ^ d.a[11]>>(64-ro_07)
- d.b[18] = d.a[17]<<ro_13 ^ d.a[17]>>(64-ro_13)
- d.b[19] = d.a[23]<<ro_19 ^ d.a[23]>>(64-ro_19)
- d.b[20] = d.a[2]<<ro_10 ^ d.a[2]>>(64-ro_10)
- d.b[21] = d.a[8]<<ro_16 ^ d.a[8]>>(64-ro_16)
- d.b[22] = d.a[14]<<ro_22 ^ d.a[14]>>(64-ro_22)
- d.b[23] = d.a[15]<<ro_03 ^ d.a[15]>>(64-ro_03)
- d.b[24] = d.a[21]<<ro_09 ^ d.a[21]>>(64-ro_09)
-
- // χ step
- d.a[0] = d.b[0] ^ (^d.b[1] & d.b[2])
- d.a[1] = d.b[1] ^ (^d.b[2] & d.b[3])
- d.a[2] = d.b[2] ^ (^d.b[3] & d.b[4])
- d.a[3] = d.b[3] ^ (^d.b[4] & d.b[0])
- d.a[4] = d.b[4] ^ (^d.b[0] & d.b[1])
- d.a[5] = d.b[5] ^ (^d.b[6] & d.b[7])
- d.a[6] = d.b[6] ^ (^d.b[7] & d.b[8])
- d.a[7] = d.b[7] ^ (^d.b[8] & d.b[9])
- d.a[8] = d.b[8] ^ (^d.b[9] & d.b[5])
- d.a[9] = d.b[9] ^ (^d.b[5] & d.b[6])
- d.a[10] = d.b[10] ^ (^d.b[11] & d.b[12])
- d.a[11] = d.b[11] ^ (^d.b[12] & d.b[13])
- d.a[12] = d.b[12] ^ (^d.b[13] & d.b[14])
- d.a[13] = d.b[13] ^ (^d.b[14] & d.b[10])
- d.a[14] = d.b[14] ^ (^d.b[10] & d.b[11])
- d.a[15] = d.b[15] ^ (^d.b[16] & d.b[17])
- d.a[16] = d.b[16] ^ (^d.b[17] & d.b[18])
- d.a[17] = d.b[17] ^ (^d.b[18] & d.b[19])
- d.a[18] = d.b[18] ^ (^d.b[19] & d.b[15])
- d.a[19] = d.b[19] ^ (^d.b[15] & d.b[16])
- d.a[20] = d.b[20] ^ (^d.b[21] & d.b[22])
- d.a[21] = d.b[21] ^ (^d.b[22] & d.b[23])
- d.a[22] = d.b[22] ^ (^d.b[23] & d.b[24])
- d.a[23] = d.b[23] ^ (^d.b[24] & d.b[20])
- d.a[24] = d.b[24] ^ (^d.b[20] & d.b[21])
-
- // ι step
- d.a[0] ^= roundConstant
- }
+// keccakF1600 applies the Keccak permutation to a 1600b-wide
+// state represented as a slice of 25 uint64s.
+func keccakF1600(a *[25]uint64) {
+ // Implementation translated from Keccak-inplace.c
+ // in the keccak reference code.
+ var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
+
+ for i := 0; i < 24; i += 4 {
+ // Combines the 5 steps in each round into 2 steps.
+ // Unrolls 4 rounds per loop and spreads some steps across rounds.
+
+ // Round 1
+ bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
+ bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
+ bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
+ bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
+ bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
+ d0 = bc4 ^ (bc1<<1 | bc1>>63)
+ d1 = bc0 ^ (bc2<<1 | bc2>>63)
+ d2 = bc1 ^ (bc3<<1 | bc3>>63)
+ d3 = bc2 ^ (bc4<<1 | bc4>>63)
+ d4 = bc3 ^ (bc0<<1 | bc0>>63)
+
+ bc0 = a[0] ^ d0
+ t = a[6] ^ d1
+ bc1 = t<<44 | t>>(64-44)
+ t = a[12] ^ d2
+ bc2 = t<<43 | t>>(64-43)
+ t = a[18] ^ d3
+ bc3 = t<<21 | t>>(64-21)
+ t = a[24] ^ d4
+ bc4 = t<<14 | t>>(64-14)
+ a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i]
+ a[6] = bc1 ^ (bc3 &^ bc2)
+ a[12] = bc2 ^ (bc4 &^ bc3)
+ a[18] = bc3 ^ (bc0 &^ bc4)
+ a[24] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[10] ^ d0
+ bc2 = t<<3 | t>>(64-3)
+ t = a[16] ^ d1
+ bc3 = t<<45 | t>>(64-45)
+ t = a[22] ^ d2
+ bc4 = t<<61 | t>>(64-61)
+ t = a[3] ^ d3
+ bc0 = t<<28 | t>>(64-28)
+ t = a[9] ^ d4
+ bc1 = t<<20 | t>>(64-20)
+ a[10] = bc0 ^ (bc2 &^ bc1)
+ a[16] = bc1 ^ (bc3 &^ bc2)
+ a[22] = bc2 ^ (bc4 &^ bc3)
+ a[3] = bc3 ^ (bc0 &^ bc4)
+ a[9] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[20] ^ d0
+ bc4 = t<<18 | t>>(64-18)
+ t = a[1] ^ d1
+ bc0 = t<<1 | t>>(64-1)
+ t = a[7] ^ d2
+ bc1 = t<<6 | t>>(64-6)
+ t = a[13] ^ d3
+ bc2 = t<<25 | t>>(64-25)
+ t = a[19] ^ d4
+ bc3 = t<<8 | t>>(64-8)
+ a[20] = bc0 ^ (bc2 &^ bc1)
+ a[1] = bc1 ^ (bc3 &^ bc2)
+ a[7] = bc2 ^ (bc4 &^ bc3)
+ a[13] = bc3 ^ (bc0 &^ bc4)
+ a[19] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[5] ^ d0
+ bc1 = t<<36 | t>>(64-36)
+ t = a[11] ^ d1
+ bc2 = t<<10 | t>>(64-10)
+ t = a[17] ^ d2
+ bc3 = t<<15 | t>>(64-15)
+ t = a[23] ^ d3
+ bc4 = t<<56 | t>>(64-56)
+ t = a[4] ^ d4
+ bc0 = t<<27 | t>>(64-27)
+ a[5] = bc0 ^ (bc2 &^ bc1)
+ a[11] = bc1 ^ (bc3 &^ bc2)
+ a[17] = bc2 ^ (bc4 &^ bc3)
+ a[23] = bc3 ^ (bc0 &^ bc4)
+ a[4] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[15] ^ d0
+ bc3 = t<<41 | t>>(64-41)
+ t = a[21] ^ d1
+ bc4 = t<<2 | t>>(64-2)
+ t = a[2] ^ d2
+ bc0 = t<<62 | t>>(64-62)
+ t = a[8] ^ d3
+ bc1 = t<<55 | t>>(64-55)
+ t = a[14] ^ d4
+ bc2 = t<<39 | t>>(64-39)
+ a[15] = bc0 ^ (bc2 &^ bc1)
+ a[21] = bc1 ^ (bc3 &^ bc2)
+ a[2] = bc2 ^ (bc4 &^ bc3)
+ a[8] = bc3 ^ (bc0 &^ bc4)
+ a[14] = bc4 ^ (bc1 &^ bc0)
+
+ // Round 2
+ bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
+ bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
+ bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
+ bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
+ bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
+ d0 = bc4 ^ (bc1<<1 | bc1>>63)
+ d1 = bc0 ^ (bc2<<1 | bc2>>63)
+ d2 = bc1 ^ (bc3<<1 | bc3>>63)
+ d3 = bc2 ^ (bc4<<1 | bc4>>63)
+ d4 = bc3 ^ (bc0<<1 | bc0>>63)
+
+ bc0 = a[0] ^ d0
+ t = a[16] ^ d1
+ bc1 = t<<44 | t>>(64-44)
+ t = a[7] ^ d2
+ bc2 = t<<43 | t>>(64-43)
+ t = a[23] ^ d3
+ bc3 = t<<21 | t>>(64-21)
+ t = a[14] ^ d4
+ bc4 = t<<14 | t>>(64-14)
+ a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1]
+ a[16] = bc1 ^ (bc3 &^ bc2)
+ a[7] = bc2 ^ (bc4 &^ bc3)
+ a[23] = bc3 ^ (bc0 &^ bc4)
+ a[14] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[20] ^ d0
+ bc2 = t<<3 | t>>(64-3)
+ t = a[11] ^ d1
+ bc3 = t<<45 | t>>(64-45)
+ t = a[2] ^ d2
+ bc4 = t<<61 | t>>(64-61)
+ t = a[18] ^ d3
+ bc0 = t<<28 | t>>(64-28)
+ t = a[9] ^ d4
+ bc1 = t<<20 | t>>(64-20)
+ a[20] = bc0 ^ (bc2 &^ bc1)
+ a[11] = bc1 ^ (bc3 &^ bc2)
+ a[2] = bc2 ^ (bc4 &^ bc3)
+ a[18] = bc3 ^ (bc0 &^ bc4)
+ a[9] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[15] ^ d0
+ bc4 = t<<18 | t>>(64-18)
+ t = a[6] ^ d1
+ bc0 = t<<1 | t>>(64-1)
+ t = a[22] ^ d2
+ bc1 = t<<6 | t>>(64-6)
+ t = a[13] ^ d3
+ bc2 = t<<25 | t>>(64-25)
+ t = a[4] ^ d4
+ bc3 = t<<8 | t>>(64-8)
+ a[15] = bc0 ^ (bc2 &^ bc1)
+ a[6] = bc1 ^ (bc3 &^ bc2)
+ a[22] = bc2 ^ (bc4 &^ bc3)
+ a[13] = bc3 ^ (bc0 &^ bc4)
+ a[4] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[10] ^ d0
+ bc1 = t<<36 | t>>(64-36)
+ t = a[1] ^ d1
+ bc2 = t<<10 | t>>(64-10)
+ t = a[17] ^ d2
+ bc3 = t<<15 | t>>(64-15)
+ t = a[8] ^ d3
+ bc4 = t<<56 | t>>(64-56)
+ t = a[24] ^ d4
+ bc0 = t<<27 | t>>(64-27)
+ a[10] = bc0 ^ (bc2 &^ bc1)
+ a[1] = bc1 ^ (bc3 &^ bc2)
+ a[17] = bc2 ^ (bc4 &^ bc3)
+ a[8] = bc3 ^ (bc0 &^ bc4)
+ a[24] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[5] ^ d0
+ bc3 = t<<41 | t>>(64-41)
+ t = a[21] ^ d1
+ bc4 = t<<2 | t>>(64-2)
+ t = a[12] ^ d2
+ bc0 = t<<62 | t>>(64-62)
+ t = a[3] ^ d3
+ bc1 = t<<55 | t>>(64-55)
+ t = a[19] ^ d4
+ bc2 = t<<39 | t>>(64-39)
+ a[5] = bc0 ^ (bc2 &^ bc1)
+ a[21] = bc1 ^ (bc3 &^ bc2)
+ a[12] = bc2 ^ (bc4 &^ bc3)
+ a[3] = bc3 ^ (bc0 &^ bc4)
+ a[19] = bc4 ^ (bc1 &^ bc0)
+
+ // Round 3
+ bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
+ bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
+ bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
+ bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
+ bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
+ d0 = bc4 ^ (bc1<<1 | bc1>>63)
+ d1 = bc0 ^ (bc2<<1 | bc2>>63)
+ d2 = bc1 ^ (bc3<<1 | bc3>>63)
+ d3 = bc2 ^ (bc4<<1 | bc4>>63)
+ d4 = bc3 ^ (bc0<<1 | bc0>>63)
+
+ bc0 = a[0] ^ d0
+ t = a[11] ^ d1
+ bc1 = t<<44 | t>>(64-44)
+ t = a[22] ^ d2
+ bc2 = t<<43 | t>>(64-43)
+ t = a[8] ^ d3
+ bc3 = t<<21 | t>>(64-21)
+ t = a[19] ^ d4
+ bc4 = t<<14 | t>>(64-14)
+ a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2]
+ a[11] = bc1 ^ (bc3 &^ bc2)
+ a[22] = bc2 ^ (bc4 &^ bc3)
+ a[8] = bc3 ^ (bc0 &^ bc4)
+ a[19] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[15] ^ d0
+ bc2 = t<<3 | t>>(64-3)
+ t = a[1] ^ d1
+ bc3 = t<<45 | t>>(64-45)
+ t = a[12] ^ d2
+ bc4 = t<<61 | t>>(64-61)
+ t = a[23] ^ d3
+ bc0 = t<<28 | t>>(64-28)
+ t = a[9] ^ d4
+ bc1 = t<<20 | t>>(64-20)
+ a[15] = bc0 ^ (bc2 &^ bc1)
+ a[1] = bc1 ^ (bc3 &^ bc2)
+ a[12] = bc2 ^ (bc4 &^ bc3)
+ a[23] = bc3 ^ (bc0 &^ bc4)
+ a[9] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[5] ^ d0
+ bc4 = t<<18 | t>>(64-18)
+ t = a[16] ^ d1
+ bc0 = t<<1 | t>>(64-1)
+ t = a[2] ^ d2
+ bc1 = t<<6 | t>>(64-6)
+ t = a[13] ^ d3
+ bc2 = t<<25 | t>>(64-25)
+ t = a[24] ^ d4
+ bc3 = t<<8 | t>>(64-8)
+ a[5] = bc0 ^ (bc2 &^ bc1)
+ a[16] = bc1 ^ (bc3 &^ bc2)
+ a[2] = bc2 ^ (bc4 &^ bc3)
+ a[13] = bc3 ^ (bc0 &^ bc4)
+ a[24] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[20] ^ d0
+ bc1 = t<<36 | t>>(64-36)
+ t = a[6] ^ d1
+ bc2 = t<<10 | t>>(64-10)
+ t = a[17] ^ d2
+ bc3 = t<<15 | t>>(64-15)
+ t = a[3] ^ d3
+ bc4 = t<<56 | t>>(64-56)
+ t = a[14] ^ d4
+ bc0 = t<<27 | t>>(64-27)
+ a[20] = bc0 ^ (bc2 &^ bc1)
+ a[6] = bc1 ^ (bc3 &^ bc2)
+ a[17] = bc2 ^ (bc4 &^ bc3)
+ a[3] = bc3 ^ (bc0 &^ bc4)
+ a[14] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[10] ^ d0
+ bc3 = t<<41 | t>>(64-41)
+ t = a[21] ^ d1
+ bc4 = t<<2 | t>>(64-2)
+ t = a[7] ^ d2
+ bc0 = t<<62 | t>>(64-62)
+ t = a[18] ^ d3
+ bc1 = t<<55 | t>>(64-55)
+ t = a[4] ^ d4
+ bc2 = t<<39 | t>>(64-39)
+ a[10] = bc0 ^ (bc2 &^ bc1)
+ a[21] = bc1 ^ (bc3 &^ bc2)
+ a[7] = bc2 ^ (bc4 &^ bc3)
+ a[18] = bc3 ^ (bc0 &^ bc4)
+ a[4] = bc4 ^ (bc1 &^ bc0)
+
+ // Round 4
+ bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
+ bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
+ bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
+ bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
+ bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
+ d0 = bc4 ^ (bc1<<1 | bc1>>63)
+ d1 = bc0 ^ (bc2<<1 | bc2>>63)
+ d2 = bc1 ^ (bc3<<1 | bc3>>63)
+ d3 = bc2 ^ (bc4<<1 | bc4>>63)
+ d4 = bc3 ^ (bc0<<1 | bc0>>63)
+
+ bc0 = a[0] ^ d0
+ t = a[1] ^ d1
+ bc1 = t<<44 | t>>(64-44)
+ t = a[2] ^ d2
+ bc2 = t<<43 | t>>(64-43)
+ t = a[3] ^ d3
+ bc3 = t<<21 | t>>(64-21)
+ t = a[4] ^ d4
+ bc4 = t<<14 | t>>(64-14)
+ a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3]
+ a[1] = bc1 ^ (bc3 &^ bc2)
+ a[2] = bc2 ^ (bc4 &^ bc3)
+ a[3] = bc3 ^ (bc0 &^ bc4)
+ a[4] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[5] ^ d0
+ bc2 = t<<3 | t>>(64-3)
+ t = a[6] ^ d1
+ bc3 = t<<45 | t>>(64-45)
+ t = a[7] ^ d2
+ bc4 = t<<61 | t>>(64-61)
+ t = a[8] ^ d3
+ bc0 = t<<28 | t>>(64-28)
+ t = a[9] ^ d4
+ bc1 = t<<20 | t>>(64-20)
+ a[5] = bc0 ^ (bc2 &^ bc1)
+ a[6] = bc1 ^ (bc3 &^ bc2)
+ a[7] = bc2 ^ (bc4 &^ bc3)
+ a[8] = bc3 ^ (bc0 &^ bc4)
+ a[9] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[10] ^ d0
+ bc4 = t<<18 | t>>(64-18)
+ t = a[11] ^ d1
+ bc0 = t<<1 | t>>(64-1)
+ t = a[12] ^ d2
+ bc1 = t<<6 | t>>(64-6)
+ t = a[13] ^ d3
+ bc2 = t<<25 | t>>(64-25)
+ t = a[14] ^ d4
+ bc3 = t<<8 | t>>(64-8)
+ a[10] = bc0 ^ (bc2 &^ bc1)
+ a[11] = bc1 ^ (bc3 &^ bc2)
+ a[12] = bc2 ^ (bc4 &^ bc3)
+ a[13] = bc3 ^ (bc0 &^ bc4)
+ a[14] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[15] ^ d0
+ bc1 = t<<36 | t>>(64-36)
+ t = a[16] ^ d1
+ bc2 = t<<10 | t>>(64-10)
+ t = a[17] ^ d2
+ bc3 = t<<15 | t>>(64-15)
+ t = a[18] ^ d3
+ bc4 = t<<56 | t>>(64-56)
+ t = a[19] ^ d4
+ bc0 = t<<27 | t>>(64-27)
+ a[15] = bc0 ^ (bc2 &^ bc1)
+ a[16] = bc1 ^ (bc3 &^ bc2)
+ a[17] = bc2 ^ (bc4 &^ bc3)
+ a[18] = bc3 ^ (bc0 &^ bc4)
+ a[19] = bc4 ^ (bc1 &^ bc0)
+
+ t = a[20] ^ d0
+ bc3 = t<<41 | t>>(64-41)
+ t = a[21] ^ d1
+ bc4 = t<<2 | t>>(64-2)
+ t = a[22] ^ d2
+ bc0 = t<<62 | t>>(64-62)
+ t = a[23] ^ d3
+ bc1 = t<<55 | t>>(64-55)
+ t = a[24] ^ d4
+ bc2 = t<<39 | t>>(64-39)
+ a[20] = bc0 ^ (bc2 &^ bc1)
+ a[21] = bc1 ^ (bc3 &^ bc2)
+ a[22] = bc2 ^ (bc4 &^ bc3)
+ a[23] = bc3 ^ (bc0 &^ bc4)
+ a[24] = bc4 ^ (bc1 &^ bc0)
+ }
}
diff --git a/crypto/sha3/sha3.go b/crypto/sha3/sha3.go
index 22df0ef11..6b058ae4d 100644
--- a/crypto/sha3/sha3.go
+++ b/crypto/sha3/sha3.go
@@ -38,13 +38,10 @@ const stateSize = laneSize * numLanes
// O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the
// capacity/outputSize ratio to allow for more output with lower cryptographic security.
type digest struct {
- a [numLanes]uint64 // main state of the hash
- b [numLanes]uint64 // intermediate states
- c [sliceSize]uint64 // intermediate states
- d [sliceSize]uint64 // intermediate states
- outputSize int // desired output size in bytes
- capacity int // number of bytes to leave untouched during squeeze/absorb
- absorbed int // number of bytes absorbed thus far
+ a [numLanes]uint64 // main state of the hash
+ outputSize int // desired output size in bytes
+ capacity int // number of bytes to leave untouched during squeeze/absorb
+ absorbed int // number of bytes absorbed thus far
}
// minInt returns the lesser of two integer arguments, to simplify the absorption routine.
@@ -116,7 +113,7 @@ func (d *digest) Write(p []byte) (int, error) {
// For every rate() bytes absorbed, the state must be permuted via the F Function.
if (d.absorbed)%d.rate() == 0 {
- d.keccakF()
+ keccakF1600(&d.a)
}
}
@@ -134,7 +131,7 @@ func (d *digest) Write(p []byte) (int, error) {
d.absorbed += (lastLane - firstLane) * laneSize
// For every rate() bytes absorbed, the state must be permuted via the F Function.
if (d.absorbed)%d.rate() == 0 {
- d.keccakF()
+ keccakF1600(&d.a)
}
offset = 0
@@ -167,7 +164,7 @@ func (d *digest) pad() {
// finalize prepares the hash to output data by padding and one final permutation of the state.
func (d *digest) finalize() {
d.pad()
- d.keccakF()
+ keccakF1600(&d.a)
}
// squeeze outputs an arbitrary number of bytes from the hash state.
@@ -192,7 +189,7 @@ func (d *digest) squeeze(in []byte, toSqueeze int) []byte {
out = out[laneSize:]
}
if len(out) > 0 {
- d.keccakF()
+ keccakF1600(&d.a)
}
}
return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data.