aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/secp256k1/libsecp256k1/src/scalar_impl.h')
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_impl.h337
1 files changed, 337 insertions, 0 deletions
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
new file mode 100644
index 000000000..88ea97de8
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
@@ -0,0 +1,337 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_IMPL_H_
+#define _SECP256K1_SCALAR_IMPL_H_
+
+#include <string.h>
+
+#include "group.h"
+#include "scalar.h"
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#if defined(USE_SCALAR_4X64)
+#include "scalar_4x64_impl.h"
+#elif defined(USE_SCALAR_8X32)
+#include "scalar_8x32_impl.h"
+#else
+#error "Please select scalar implementation"
+#endif
+
+#ifndef USE_NUM_NONE
+static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
+ unsigned char c[32];
+ secp256k1_scalar_get_b32(c, a);
+ secp256k1_num_set_bin(r, c, 32);
+}
+
+/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
+static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
+ static const unsigned char order[32] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
+ 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
+ 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
+ };
+ secp256k1_num_set_bin(r, order, 32);
+}
+#endif
+
+static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
+ secp256k1_scalar *t;
+ int i;
+ /* First compute x ^ (2^N - 1) for some values of N. */
+ secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
+
+ secp256k1_scalar_sqr(&x2, x);
+ secp256k1_scalar_mul(&x2, &x2, x);
+
+ secp256k1_scalar_sqr(&x3, &x2);
+ secp256k1_scalar_mul(&x3, &x3, x);
+
+ secp256k1_scalar_sqr(&x4, &x3);
+ secp256k1_scalar_mul(&x4, &x4, x);
+
+ secp256k1_scalar_sqr(&x6, &x4);
+ secp256k1_scalar_sqr(&x6, &x6);
+ secp256k1_scalar_mul(&x6, &x6, &x2);
+
+ secp256k1_scalar_sqr(&x7, &x6);
+ secp256k1_scalar_mul(&x7, &x7, x);
+
+ secp256k1_scalar_sqr(&x8, &x7);
+ secp256k1_scalar_mul(&x8, &x8, x);
+
+ secp256k1_scalar_sqr(&x15, &x8);
+ for (i = 0; i < 6; i++) {
+ secp256k1_scalar_sqr(&x15, &x15);
+ }
+ secp256k1_scalar_mul(&x15, &x15, &x7);
+
+ secp256k1_scalar_sqr(&x30, &x15);
+ for (i = 0; i < 14; i++) {
+ secp256k1_scalar_sqr(&x30, &x30);
+ }
+ secp256k1_scalar_mul(&x30, &x30, &x15);
+
+ secp256k1_scalar_sqr(&x60, &x30);
+ for (i = 0; i < 29; i++) {
+ secp256k1_scalar_sqr(&x60, &x60);
+ }
+ secp256k1_scalar_mul(&x60, &x60, &x30);
+
+ secp256k1_scalar_sqr(&x120, &x60);
+ for (i = 0; i < 59; i++) {
+ secp256k1_scalar_sqr(&x120, &x120);
+ }
+ secp256k1_scalar_mul(&x120, &x120, &x60);
+
+ secp256k1_scalar_sqr(&x127, &x120);
+ for (i = 0; i < 6; i++) {
+ secp256k1_scalar_sqr(&x127, &x127);
+ }
+ secp256k1_scalar_mul(&x127, &x127, &x7);
+
+ /* Then accumulate the final result (t starts at x127). */
+ t = &x127;
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 3; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 5; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 4; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 5; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x4); /* 1111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 4; i++) { /* 000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 10; i++) { /* 0000000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 9; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 5; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x4); /* 1111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 5; i++) { /* 000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 4; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 8; i++) { /* 000000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 3; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 6; i++) { /* 00000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 8; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(r, t, &x6); /* 111111 */
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
+ /* d[0] is present and is the lowest word for all representations */
+ return !(a->d[0] & 1);
+}
+
+static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
+#if defined(USE_SCALAR_INV_BUILTIN)
+ secp256k1_scalar_inverse(r, x);
+#elif defined(USE_SCALAR_INV_NUM)
+ unsigned char b[32];
+ secp256k1_num n, m;
+ secp256k1_scalar t = *x;
+ secp256k1_scalar_get_b32(b, &t);
+ secp256k1_num_set_bin(&n, b, 32);
+ secp256k1_scalar_order_get_num(&m);
+ secp256k1_num_mod_inverse(&n, &n, &m);
+ secp256k1_num_get_bin(b, 32, &n);
+ secp256k1_scalar_set_b32(r, b, NULL);
+ /* Verify that the inverse was computed correctly, without GMP code. */
+ secp256k1_scalar_mul(&t, &t, r);
+ CHECK(secp256k1_scalar_is_one(&t));
+#else
+#error "Please select scalar inverse implementation"
+#endif
+}
+
+#ifdef USE_ENDOMORPHISM
+/**
+ * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
+ * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
+ * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
+ *
+ * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
+ * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
+ * and k2 have a small size.
+ * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
+ *
+ * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
+ * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
+ * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
+ * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
+ *
+ * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
+ * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
+ * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
+ *
+ * g1, g2 are precomputed constants used to replace division with a rounded multiplication
+ * when decomposing the scalar for an endomorphism-based point multiplication.
+ *
+ * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
+ * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
+ *
+ * The derivation is described in the paper "Efficient Software Implementation of Public-Key
+ * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
+ * Section 4.3 (here we use a somewhat higher-precision estimate):
+ * d = a1*b2 - b1*a2
+ * g1 = round((2^272)*b2/d)
+ * g2 = round((2^272)*b1/d)
+ *
+ * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
+ * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
+ *
+ * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
+ */
+
+static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ secp256k1_scalar c1, c2;
+ static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
+ 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
+ 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
+ );
+ static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
+ 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
+ );
+ static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
+ 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
+ );
+ static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
+ 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
+ );
+ static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
+ 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
+ );
+ VERIFY_CHECK(r1 != a);
+ VERIFY_CHECK(r2 != a);
+ /* these _var calls are constant time since the shift amount is constant */
+ secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
+ secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
+ secp256k1_scalar_mul(&c1, &c1, &minus_b1);
+ secp256k1_scalar_mul(&c2, &c2, &minus_b2);
+ secp256k1_scalar_add(r2, &c1, &c2);
+ secp256k1_scalar_mul(r1, r2, &minus_lambda);
+ secp256k1_scalar_add(r1, r1, a);
+}
+#endif
+
+#endif