// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "fmt" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/pow" ) // FakePow is a non-validating proof of work implementation. // It returns true from Verify for any block. type FakePow struct{} func (f FakePow) Search(block pow.Block, stop <-chan struct{}, index int) (uint64, []byte) { return 0, nil } func (f FakePow) Verify(block pow.Block) bool { return true } func (f FakePow) GetHashrate() int64 { return 0 } func (f FakePow) Turbo(bool) {} // So we can deterministically seed different blockchains var ( canonicalSeed = 1 forkSeed = 2 ) // BlockGen creates blocks for testing. // See GenerateChain for a detailed explanation. type BlockGen struct { i int parent *types.Block chain []*types.Block header *types.Header statedb *state.StateDB gasPool *GasPool txs []*types.Transaction receipts []*types.Receipt uncles []*types.Header } // SetCoinbase sets the coinbase of the generated block. // It can be called at most once. func (b *BlockGen) SetCoinbase(addr common.Address) { if b.gasPool != nil { if len(b.txs) > 0 { panic("coinbase must be set before adding transactions") } panic("coinbase can only be set once") } b.header.Coinbase = addr b.gasPool = new(GasPool).AddGas(b.header.GasLimit) } // SetExtra sets the extra data field of the generated block. func (b *BlockGen) SetExtra(data []byte) { b.header.Extra = data } // AddTx adds a transaction to the generated block. If no coinbase has // been set, the block's coinbase is set to the zero address. // // AddTx panics if the transaction cannot be executed. In addition to // the protocol-imposed limitations (gas limit, etc.), there are some // further limitations on the content of transactions that can be // added. Notably, contract code relying on the BLOCKHASH instruction // will panic during execution. func (b *BlockGen) AddTx(tx *types.Transaction) { if b.gasPool == nil { b.SetCoinbase(common.Address{}) } b.statedb.StartRecord(tx.Hash(), common.Hash{}, len(b.txs)) receipt, _, _, err := ApplyTransaction(nil, b.gasPool, b.statedb, b.header, tx, b.header.GasUsed, nil) if err != nil { panic(err) } b.txs = append(b.txs, tx) b.receipts = append(b.receipts, receipt) } // Number returns the block number of the block being generated. func (b *BlockGen) Number() *big.Int { return new(big.Int).Set(b.header.Number) } // AddUncheckedReceipts forcefully adds a receipts to the block without a // backing transaction. // // AddUncheckedReceipts will cause consensus failures when used during real // chain processing. This is best used in conjunction with raw block insertion. func (b *BlockGen) AddUncheckedReceipt(receipt *types.Receipt) { b.receipts = append(b.receipts, receipt) } // TxNonce returns the next valid transaction nonce for the // account at addr. It panics if the account does not exist. func (b *BlockGen) TxNonce(addr common.Address) uint64 { if !b.statedb.HasAccount(addr) { panic("account does not exist") } return b.statedb.GetNonce(addr) } // AddUncle adds an uncle header to the generated block. func (b *BlockGen) AddUncle(h *types.Header) { b.uncles = append(b.uncles, h) } // PrevBlock returns a previously generated block by number. It panics if // num is greater or equal to the number of the block being generated. // For index -1, PrevBlock returns the parent block given to GenerateChain. func (b *BlockGen) PrevBlock(index int) *types.Block { if index >= b.i { panic("block index out of range") } if index == -1 { return b.parent } return b.chain[index] } // OffsetTime modifies the time instance of a block, implicitly changing its // associated difficulty. It's useful to test scenarios where forking is not // tied to chain length directly. func (b *BlockGen) OffsetTime(seconds int64) { b.header.Time.Add(b.header.Time, new(big.Int).SetInt64(seconds)) if b.header.Time.Cmp(b.parent.Header().Time) <= 0 { panic("block time out of range") } b.header.Difficulty = CalcDifficulty(b.header.Time.Uint64(), b.parent.Time().Uint64(), b.parent.Number(), b.parent.Difficulty()) } // GenerateChain creates a chain of n blocks. The first block's // parent will be the provided parent. db is used to store // intermediate states and should contain the parent's state trie. // // The generator function is called with a new block generator for // every block. Any transactions and uncles added to the generator // become part of the block. If gen is nil, the blocks will be empty // and their coinbase will be the zero address. // // Blocks created by GenerateChain do not contain valid proof of work // values. Inserting them into BlockChain requires use of FakePow or // a similar non-validating proof of work implementation. func GenerateChain(parent *types.Block, db ethdb.Database, n int, gen func(int, *BlockGen)) ([]*types.Block, []types.Receipts) { blocks, receipts := make(types.Blocks, n), make([]types.Receipts, n) genblock := func(i int, h *types.Header, statedb *state.StateDB) (*types.Block, types.Receipts) { b := &BlockGen{parent: parent, i: i, chain: blocks, header: h, statedb: statedb} if gen != nil { gen(i, b) } AccumulateRewards(statedb, h, b.uncles) root, err := statedb.Commit() if err != nil { panic(fmt.Sprintf("state write error: %v", err)) } h.Root = root return types.NewBlock(h, b.txs, b.uncles, b.receipts), b.receipts } for i := 0; i < n; i++ { statedb, err := state.New(parent.Root(), db) if err != nil { panic(err) } header := makeHeader(parent, statedb) block, receipt := genblock(i, header, statedb) blocks[i] = block receipts[i] = receipt parent = block } return blocks, receipts } func makeHeader(parent *types.Block, state *state.StateDB) *types.Header { var time *big.Int if parent.Time() == nil { time = big.NewInt(10) } else { time = new(big.Int).Add(parent.Time(), big.NewInt(10)) // block time is fixed at 10 seconds } return &types.Header{ Root: state.IntermediateRoot(), ParentHash: parent.Hash(), Coinbase: parent.Coinbase(), Difficulty: CalcDifficulty(time.Uint64(), new(big.Int).Sub(time, big.NewInt(10)).Uint64(), parent.Number(), parent.Difficulty()), GasLimit: CalcGasLimit(parent), GasUsed: new(big.Int), Number: new(big.Int).Add(parent.Number(), common.Big1), Time: time, } } // newCanonical creates a chain database, and injects a deterministic canonical // chain. Depending on the full flag, if creates either a full block chain or a // header only chain. func newCanonical(n int, full bool) (ethdb.Database, *BlockChain, error) { // Create the new chain database db, _ := ethdb.NewMemDatabase() evmux := &event.TypeMux{} // Initialize a fresh chain with only a genesis block genesis, _ := WriteTestNetGenesisBlock(db) blockchain, _ := NewBlockChain(db, FakePow{}, evmux) // Create and inject the requested chain if n == 0 { return db, blockchain, nil } if full { // Full block-chain requested blocks := makeBlockChain(genesis, n, db, canonicalSeed) _, err := blockchain.InsertChain(blocks) return db, blockchain, err } // Header-only chain requested headers := makeHeaderChain(genesis.Header(), n, db, canonicalSeed) _, err := blockchain.InsertHeaderChain(headers, 1) return db, blockchain, err } // makeHeaderChain creates a deterministic chain of headers rooted at parent. func makeHeaderChain(parent *types.Header, n int, db ethdb.Database, seed int) []*types.Header { blocks := makeBlockChain(types.NewBlockWithHeader(parent), n, db, seed) headers := make([]*types.Header, len(blocks)) for i, block := range blocks { headers[i] = block.Header() } return headers } // makeBlockChain creates a deterministic chain of blocks rooted at parent. func makeBlockChain(parent *types.Block, n int, db ethdb.Database, seed int) []*types.Block { blocks, _ := GenerateChain(parent, db, n, func(i int, b *BlockGen) { b.SetCoinbase(common.Address{0: byte(seed), 19: byte(i)}) }) return blocks }