// Copyright 2015 The go-ethereum Authors // This file is part of go-ethereum. // // go-ethereum is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // go-ethereum is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with go-ethereum. If not, see . // Package downloader contains the manual full chain synchronisation. package downloader import ( "bytes" "errors" "math" "math/rand" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "gopkg.in/fatih/set.v0" ) const ( eth60 = 60 // Constant to check for old protocol support eth61 = 61 // Constant to check for new protocol support ) var ( MinHashFetch = 512 // Minimum amount of hashes to not consider a peer stalling MaxHashFetch = 512 // Amount of hashes to be fetched per retrieval request MaxBlockFetch = 128 // Amount of blocks to be fetched per retrieval request hashTTL = 5 * time.Second // Time it takes for a hash request to time out blockSoftTTL = 3 * time.Second // Request completion threshold for increasing or decreasing a peer's bandwidth blockHardTTL = 3 * blockSoftTTL // Maximum time allowance before a block request is considered expired crossCheckCycle = time.Second // Period after which to check for expired cross checks maxQueuedHashes = 256 * 1024 // Maximum number of hashes to queue for import (DOS protection) maxBannedHashes = 4096 // Number of bannable hashes before phasing old ones out maxBlockProcess = 256 // Number of blocks to import at once into the chain ) var ( errBusy = errors.New("busy") errUnknownPeer = errors.New("peer is unknown or unhealthy") errBadPeer = errors.New("action from bad peer ignored") errStallingPeer = errors.New("peer is stalling") errBannedHead = errors.New("peer head hash already banned") errNoPeers = errors.New("no peers to keep download active") errPendingQueue = errors.New("pending items in queue") errTimeout = errors.New("timeout") errEmptyHashSet = errors.New("empty hash set by peer") errPeersUnavailable = errors.New("no peers available or all peers tried for block download process") errAlreadyInPool = errors.New("hash already in pool") errInvalidChain = errors.New("retrieved hash chain is invalid") errCrossCheckFailed = errors.New("block cross-check failed") errCancelHashFetch = errors.New("hash fetching canceled (requested)") errCancelBlockFetch = errors.New("block downloading canceled (requested)") errNoSyncActive = errors.New("no sync active") ) // hashCheckFn is a callback type for verifying a hash's presence in the local chain. type hashCheckFn func(common.Hash) bool // blockRetrievalFn is a callback type for retrieving a block from the local chain. type blockRetrievalFn func(common.Hash) *types.Block // headRetrievalFn is a callback type for retrieving the head block from the local chain. type headRetrievalFn func() *types.Block // chainInsertFn is a callback type to insert a batch of blocks into the local chain. type chainInsertFn func(types.Blocks) (int, error) // peerDropFn is a callback type for dropping a peer detected as malicious. type peerDropFn func(id string) type blockPack struct { peerId string blocks []*types.Block } type hashPack struct { peerId string hashes []common.Hash } type crossCheck struct { expire time.Time parent common.Hash } type Downloader struct { mux *event.TypeMux queue *queue // Scheduler for selecting the hashes to download peers *peerSet // Set of active peers from which download can proceed checks map[common.Hash]*crossCheck // Pending cross checks to verify a hash chain banned *set.Set // Set of hashes we've received and banned interrupt int32 // Atomic boolean to signal termination // Statistics importStart time.Time // Instance when the last blocks were taken from the cache importQueue []*Block // Previously taken blocks to check import progress importDone int // Number of taken blocks already imported from the last batch importLock sync.Mutex // Callbacks hasBlock hashCheckFn // Checks if a block is present in the chain getBlock blockRetrievalFn // Retrieves a block from the chain headBlock headRetrievalFn // Retrieves the head block from the chain insertChain chainInsertFn // Injects a batch of blocks into the chain dropPeer peerDropFn // Drops a peer for misbehaving // Status synchroniseMock func(id string, hash common.Hash) error // Replacement for synchronise during testing synchronising int32 processing int32 notified int32 // Channels newPeerCh chan *peer hashCh chan hashPack // Channel receiving inbound hashes blockCh chan blockPack // Channel receiving inbound blocks processCh chan bool // Channel to signal the block fetcher of new or finished work cancelCh chan struct{} // Channel to cancel mid-flight syncs cancelLock sync.RWMutex // Lock to protect the cancel channel in delivers } // Block is an origin-tagged blockchain block. type Block struct { RawBlock *types.Block OriginPeer string } // New creates a new downloader to fetch hashes and blocks from remote peers. func New(mux *event.TypeMux, hasBlock hashCheckFn, getBlock blockRetrievalFn, headBlock headRetrievalFn, insertChain chainInsertFn, dropPeer peerDropFn) *Downloader { // Create the base downloader downloader := &Downloader{ mux: mux, queue: newQueue(), peers: newPeerSet(), hasBlock: hasBlock, getBlock: getBlock, headBlock: headBlock, insertChain: insertChain, dropPeer: dropPeer, newPeerCh: make(chan *peer, 1), hashCh: make(chan hashPack, 1), blockCh: make(chan blockPack, 1), processCh: make(chan bool, 1), } // Inject all the known bad hashes downloader.banned = set.New() for hash, _ := range core.BadHashes { downloader.banned.Add(hash) } return downloader } // Stats retrieves the current status of the downloader. func (d *Downloader) Stats() (pending int, cached int, importing int, estimate time.Duration) { // Fetch the download status pending, cached = d.queue.Size() // Figure out the import progress d.importLock.Lock() defer d.importLock.Unlock() for len(d.importQueue) > 0 && d.hasBlock(d.importQueue[0].RawBlock.Hash()) { d.importQueue = d.importQueue[1:] d.importDone++ } importing = len(d.importQueue) // Make an estimate on the total sync estimate = 0 if d.importDone > 0 { estimate = time.Since(d.importStart) / time.Duration(d.importDone) * time.Duration(pending+cached+importing) } return } // Synchronising returns whether the downloader is currently retrieving blocks. func (d *Downloader) Synchronising() bool { return atomic.LoadInt32(&d.synchronising) > 0 } // RegisterPeer injects a new download peer into the set of block source to be // used for fetching hashes and blocks from. func (d *Downloader) RegisterPeer(id string, version int, head common.Hash, getRelHashes relativeHashFetcherFn, getAbsHashes absoluteHashFetcherFn, getBlocks blockFetcherFn) error { // If the peer wants to send a banned hash, reject if d.banned.Has(head) { glog.V(logger.Debug).Infoln("Register rejected, head hash banned:", id) return errBannedHead } // Otherwise try to construct and register the peer glog.V(logger.Detail).Infoln("Registering peer", id) if err := d.peers.Register(newPeer(id, version, head, getRelHashes, getAbsHashes, getBlocks)); err != nil { glog.V(logger.Error).Infoln("Register failed:", err) return err } return nil } // UnregisterPeer remove a peer from the known list, preventing any action from // the specified peer. func (d *Downloader) UnregisterPeer(id string) error { glog.V(logger.Detail).Infoln("Unregistering peer", id) if err := d.peers.Unregister(id); err != nil { glog.V(logger.Error).Infoln("Unregister failed:", err) return err } return nil } // Synchronise tries to sync up our local block chain with a remote peer, both // adding various sanity checks as well as wrapping it with various log entries. func (d *Downloader) Synchronise(id string, head common.Hash) { glog.V(logger.Detail).Infof("Attempting synchronisation: %v, 0x%x", id, head) switch err := d.synchronise(id, head); err { case nil: glog.V(logger.Detail).Infof("Synchronisation completed") case errBusy: glog.V(logger.Detail).Infof("Synchronisation already in progress") case errTimeout, errBadPeer, errStallingPeer, errBannedHead, errEmptyHashSet, errPeersUnavailable, errInvalidChain, errCrossCheckFailed: glog.V(logger.Debug).Infof("Removing peer %v: %v", id, err) d.dropPeer(id) case errPendingQueue: glog.V(logger.Debug).Infoln("Synchronisation aborted:", err) default: glog.V(logger.Warn).Infof("Synchronisation failed: %v", err) } } // synchronise will select the peer and use it for synchronising. If an empty string is given // it will use the best peer possible and synchronize if it's TD is higher than our own. If any of the // checks fail an error will be returned. This method is synchronous func (d *Downloader) synchronise(id string, hash common.Hash) error { // Mock out the synchonisation if testing if d.synchroniseMock != nil { return d.synchroniseMock(id, hash) } // Make sure only one goroutine is ever allowed past this point at once if !atomic.CompareAndSwapInt32(&d.synchronising, 0, 1) { return errBusy } defer atomic.StoreInt32(&d.synchronising, 0) // If the head hash is banned, terminate immediately if d.banned.Has(hash) { return errBannedHead } // Post a user notification of the sync (only once per session) if atomic.CompareAndSwapInt32(&d.notified, 0, 1) { glog.V(logger.Info).Infoln("Block synchronisation started") } // Abort if the queue still contains some leftover data if _, cached := d.queue.Size(); cached > 0 && d.queue.GetHeadBlock() != nil { return errPendingQueue } // Reset the queue and peer set to clean any internal leftover state d.queue.Reset() d.peers.Reset() d.checks = make(map[common.Hash]*crossCheck) // Create cancel channel for aborting mid-flight d.cancelLock.Lock() d.cancelCh = make(chan struct{}) d.cancelLock.Unlock() // Retrieve the origin peer and initiate the downloading process p := d.peers.Peer(id) if p == nil { return errUnknownPeer } return d.syncWithPeer(p, hash) } // Has checks if the downloader knows about a particular hash, meaning that its // either already downloaded of pending retrieval. func (d *Downloader) Has(hash common.Hash) bool { return d.queue.Has(hash) } // syncWithPeer starts a block synchronization based on the hash chain from the // specified peer and head hash. func (d *Downloader) syncWithPeer(p *peer, hash common.Hash) (err error) { d.mux.Post(StartEvent{}) defer func() { // reset on error if err != nil { d.cancel() d.mux.Post(FailedEvent{err}) } else { d.mux.Post(DoneEvent{}) } }() glog.V(logger.Debug).Infof("Synchronizing with the network using: %s, eth/%d", p.id, p.version) switch p.version { case eth60: // Old eth/60 version, use reverse hash retrieval algorithm if err = d.fetchHashes60(p, hash); err != nil { return err } if err = d.fetchBlocks60(); err != nil { return err } case eth61: // New eth/61, use forward, concurrent hash and block retrieval algorithm number, err := d.findAncestor(p) if err != nil { return err } errc := make(chan error, 2) go func() { errc <- d.fetchHashes(p, number+1) }() go func() { errc <- d.fetchBlocks(number + 1) }() // If any fetcher fails, cancel the other if err := <-errc; err != nil { d.cancel() <-errc return err } return <-errc default: // Something very wrong, stop right here glog.V(logger.Error).Infof("Unsupported eth protocol: %d", p.version) return errBadPeer } glog.V(logger.Debug).Infoln("Synchronization completed") return nil } // cancel cancels all of the operations and resets the queue. It returns true // if the cancel operation was completed. func (d *Downloader) cancel() { // Close the current cancel channel d.cancelLock.Lock() if d.cancelCh != nil { select { case <-d.cancelCh: // Channel was already closed default: close(d.cancelCh) } } d.cancelLock.Unlock() // Reset the queue d.queue.Reset() } // Terminate interrupts the downloader, canceling all pending operations. func (d *Downloader) Terminate() { atomic.StoreInt32(&d.interrupt, 1) d.cancel() } // fetchHashes60 starts retrieving hashes backwards from a specific peer and hash, // up until it finds a common ancestor. If the source peer times out, alternative // ones are tried for continuation. func (d *Downloader) fetchHashes60(p *peer, h common.Hash) error { var ( start = time.Now() active = p // active peer will help determine the current active peer head = common.Hash{} // common and last hash timeout = time.NewTimer(0) // timer to dump a non-responsive active peer attempted = make(map[string]bool) // attempted peers will help with retries crossTicker = time.NewTicker(crossCheckCycle) // ticker to periodically check expired cross checks ) defer crossTicker.Stop() defer timeout.Stop() glog.V(logger.Debug).Infof("Downloading hashes (%x) from %s", h[:4], p.id) <-timeout.C // timeout channel should be initially empty. getHashes := func(from common.Hash) { go active.getRelHashes(from) timeout.Reset(hashTTL) } // Add the hash to the queue, and start hash retrieval. d.queue.Insert([]common.Hash{h}, false) getHashes(h) attempted[p.id] = true for finished := false; !finished; { select { case <-d.cancelCh: return errCancelHashFetch case hashPack := <-d.hashCh: // Make sure the active peer is giving us the hashes if hashPack.peerId != active.id { glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId) break } timeout.Stop() // Make sure the peer actually gave something valid if len(hashPack.hashes) == 0 { glog.V(logger.Debug).Infof("Peer (%s) responded with empty hash set", active.id) return errEmptyHashSet } for index, hash := range hashPack.hashes { if d.banned.Has(hash) { glog.V(logger.Debug).Infof("Peer (%s) sent a known invalid chain", active.id) d.queue.Insert(hashPack.hashes[:index+1], false) if err := d.banBlocks(active.id, hash); err != nil { glog.V(logger.Debug).Infof("Failed to ban batch of blocks: %v", err) } return errInvalidChain } } // Determine if we're done fetching hashes (queue up all pending), and continue if not done done, index := false, 0 for index, head = range hashPack.hashes { if d.hasBlock(head) || d.queue.GetBlock(head) != nil { glog.V(logger.Debug).Infof("Found common hash %x", head[:4]) hashPack.hashes = hashPack.hashes[:index] done = true break } } // Insert all the new hashes, but only continue if got something useful inserts := d.queue.Insert(hashPack.hashes, false) if len(inserts) == 0 && !done { glog.V(logger.Debug).Infof("Peer (%s) responded with stale hashes", active.id) return errBadPeer } if !done { // Check that the peer is not stalling the sync if len(inserts) < MinHashFetch { return errStallingPeer } // Try and fetch a random block to verify the hash batch // Skip the last hash as the cross check races with the next hash fetch cross := rand.Intn(len(inserts) - 1) origin, parent := inserts[cross], inserts[cross+1] glog.V(logger.Detail).Infof("Cross checking (%s) with %x/%x", active.id, origin, parent) d.checks[origin] = &crossCheck{ expire: time.Now().Add(blockSoftTTL), parent: parent, } go active.getBlocks([]common.Hash{origin}) // Also fetch a fresh batch of hashes getHashes(head) continue } // We're done, prepare the download cache and proceed pulling the blocks offset := uint64(0) if block := d.getBlock(head); block != nil { offset = block.NumberU64() + 1 } d.queue.Prepare(offset) finished = true case blockPack := <-d.blockCh: // Cross check the block with the random verifications if blockPack.peerId != active.id || len(blockPack.blocks) != 1 { continue } block := blockPack.blocks[0] if check, ok := d.checks[block.Hash()]; ok { if block.ParentHash() != check.parent { return errCrossCheckFailed } delete(d.checks, block.Hash()) } case <-crossTicker.C: // Iterate over all the cross checks and fail the hash chain if they're not verified for hash, check := range d.checks { if time.Now().After(check.expire) { glog.V(logger.Debug).Infof("Cross check timeout for %x", hash) return errCrossCheckFailed } } case <-timeout.C: glog.V(logger.Debug).Infof("Peer (%s) didn't respond in time for hash request", p.id) var p *peer // p will be set if a peer can be found // Attempt to find a new peer by checking inclusion of peers best hash in our // already fetched hash list. This can't guarantee 100% correctness but does // a fair job. This is always either correct or false incorrect. for _, peer := range d.peers.AllPeers() { if d.queue.Has(peer.head) && !attempted[peer.id] { p = peer break } } // if all peers have been tried, abort the process entirely or if the hash is // the zero hash. if p == nil || (head == common.Hash{}) { return errTimeout } // set p to the active peer. this will invalidate any hashes that may be returned // by our previous (delayed) peer. active = p getHashes(head) glog.V(logger.Debug).Infof("Hash fetching switched to new peer(%s)", p.id) } } glog.V(logger.Debug).Infof("Downloaded hashes (%d) in %v", d.queue.Pending(), time.Since(start)) return nil } // fetchBlocks60 iteratively downloads the entire schedules block-chain, taking // any available peers, reserving a chunk of blocks for each, wait for delivery // and periodically checking for timeouts. func (d *Downloader) fetchBlocks60() error { glog.V(logger.Debug).Infoln("Downloading", d.queue.Pending(), "block(s)") start := time.Now() // Start a ticker to continue throttled downloads and check for bad peers ticker := time.NewTicker(20 * time.Millisecond) defer ticker.Stop() out: for { select { case <-d.cancelCh: return errCancelBlockFetch case <-d.hashCh: // Out of bounds hashes received, ignore them case blockPack := <-d.blockCh: // Short circuit if it's a stale cross check if len(blockPack.blocks) == 1 { block := blockPack.blocks[0] if _, ok := d.checks[block.Hash()]; ok { delete(d.checks, block.Hash()) break } } // If the peer was previously banned and failed to deliver it's pack // in a reasonable time frame, ignore it's message. if peer := d.peers.Peer(blockPack.peerId); peer != nil { // Deliver the received chunk of blocks, and demote in case of errors err := d.queue.Deliver(blockPack.peerId, blockPack.blocks) switch err { case nil: // If no blocks were delivered, demote the peer (need the delivery above) if len(blockPack.blocks) == 0 { peer.Demote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: no blocks delivered", peer) break } // All was successful, promote the peer and potentially start processing peer.Promote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: delivered %d blocks", peer, len(blockPack.blocks)) go d.process() case errInvalidChain: // The hash chain is invalid (blocks are not ordered properly), abort return err case errNoFetchesPending: // Peer probably timed out with its delivery but came through // in the end, demote, but allow to to pull from this peer. peer.Demote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: out of bound delivery", peer) case errStaleDelivery: // Delivered something completely else than requested, usually // caused by a timeout and delivery during a new sync cycle. // Don't set it to idle as the original request should still be // in flight. peer.Demote() glog.V(logger.Detail).Infof("%s: stale delivery", peer) default: // Peer did something semi-useful, demote but keep it around peer.Demote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: delivery partially failed: %v", peer, err) go d.process() } } case <-ticker.C: // Short circuit if we lost all our peers if d.peers.Len() == 0 { return errNoPeers } // Check for block request timeouts and demote the responsible peers badPeers := d.queue.Expire(blockHardTTL) for _, pid := range badPeers { if peer := d.peers.Peer(pid); peer != nil { peer.Demote() glog.V(logger.Detail).Infof("%s: block delivery timeout", peer) } } // If there are unrequested hashes left start fetching from the available peers if d.queue.Pending() > 0 { // Throttle the download if block cache is full and waiting processing if d.queue.Throttle() { break } // Send a download request to all idle peers, until throttled idlePeers := d.peers.IdlePeers() for _, peer := range idlePeers { // Short circuit if throttling activated since above if d.queue.Throttle() { break } // Get a possible chunk. If nil is returned no chunk // could be returned due to no hashes available. request := d.queue.Reserve(peer, peer.Capacity()) if request == nil { continue } if glog.V(logger.Detail) { glog.Infof("%s: requesting %d blocks", peer, len(request.Hashes)) } // Fetch the chunk and check for error. If the peer was somehow // already fetching a chunk due to a bug, it will be returned to // the queue if err := peer.Fetch(request); err != nil { glog.V(logger.Error).Infof("Peer %s received double work", peer.id) d.queue.Cancel(request) } } // Make sure that we have peers available for fetching. If all peers have been tried // and all failed throw an error if d.queue.InFlight() == 0 { return errPeersUnavailable } } else if d.queue.InFlight() == 0 { // When there are no more queue and no more in flight, We can // safely assume we're done. Another part of the process will check // for parent errors and will re-request anything that's missing break out } } } glog.V(logger.Detail).Infoln("Downloaded block(s) in", time.Since(start)) return nil } // findAncestor tries to locate the common ancestor block of the local chain and // a remote peers blockchain. In the general case when our node was in sync and // on the correct chain, checking the top N blocks should already get us a match. // In the rare scenario when we ended up on a long soft fork (i.e. none of the // head blocks match), we do a binary search to find the common ancestor. func (d *Downloader) findAncestor(p *peer) (uint64, error) { glog.V(logger.Debug).Infof("%v: looking for common ancestor", p) // Request out head blocks to short circuit ancestor location head := d.headBlock().NumberU64() from := int64(head) - int64(MaxHashFetch) if from < 0 { from = 0 } go p.getAbsHashes(uint64(from), MaxHashFetch) // Wait for the remote response to the head fetch number, hash := uint64(0), common.Hash{} timeout := time.After(hashTTL) for finished := false; !finished; { select { case <-d.cancelCh: return 0, errCancelHashFetch case hashPack := <-d.hashCh: // Discard anything not from the origin peer if hashPack.peerId != p.id { glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId) break } // Make sure the peer actually gave something valid hashes := hashPack.hashes if len(hashes) == 0 { glog.V(logger.Debug).Infof("%v: empty head hash set", p) return 0, errEmptyHashSet } // Check if a common ancestor was found finished = true for i := len(hashes) - 1; i >= 0; i-- { if d.hasBlock(hashes[i]) { number, hash = uint64(from)+uint64(i), hashes[i] break } } case <-d.blockCh: // Out of bounds blocks received, ignore them case <-timeout: glog.V(logger.Debug).Infof("%v: head hash timeout", p) return 0, errTimeout } } // If the head fetch already found an ancestor, return if !common.EmptyHash(hash) { glog.V(logger.Debug).Infof("%v: common ancestor: #%d [%x]", p, number, hash[:4]) return number, nil } // Ancestor not found, we need to binary search over our chain start, end := uint64(0), head for start+1 < end { // Split our chain interval in two, and request the hash to cross check check := (start + end) / 2 timeout := time.After(hashTTL) go p.getAbsHashes(uint64(check), 1) // Wait until a reply arrives to this request for arrived := false; !arrived; { select { case <-d.cancelCh: return 0, errCancelHashFetch case hashPack := <-d.hashCh: // Discard anything not from the origin peer if hashPack.peerId != p.id { glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId) break } // Make sure the peer actually gave something valid hashes := hashPack.hashes if len(hashes) != 1 { glog.V(logger.Debug).Infof("%v: invalid search hash set (%d)", p, len(hashes)) return 0, errBadPeer } arrived = true // Modify the search interval based on the response block := d.getBlock(hashes[0]) if block == nil { end = check break } if block.NumberU64() != check { glog.V(logger.Debug).Infof("%v: non requested hash #%d [%x], instead of #%d", p, block.NumberU64(), block.Hash().Bytes()[:4], check) return 0, errBadPeer } start = check case <-d.blockCh: // Out of bounds blocks received, ignore them case <-timeout: glog.V(logger.Debug).Infof("%v: search hash timeout", p) return 0, errTimeout } } } return start, nil } // fetchHashes keeps retrieving hashes from the requested number, until no more // are returned, potentially throttling on the way. func (d *Downloader) fetchHashes(p *peer, from uint64) error { glog.V(logger.Debug).Infof("%v: downloading hashes from #%d", p, from) // Create a timeout timer, and the associated hash fetcher timeout := time.NewTimer(0) // timer to dump a non-responsive active peer <-timeout.C // timeout channel should be initially empty defer timeout.Stop() getHashes := func(from uint64) { glog.V(logger.Detail).Infof("%v: fetching %d hashes from #%d", p, MaxHashFetch, from) go p.getAbsHashes(from, MaxHashFetch) timeout.Reset(hashTTL) } // Start pulling hashes, until all are exhausted getHashes(from) gotHashes := false for { select { case <-d.cancelCh: return errCancelHashFetch case hashPack := <-d.hashCh: // Make sure the active peer is giving us the hashes if hashPack.peerId != p.id { glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId) break } timeout.Stop() // If no more hashes are inbound, notify the block fetcher and return if len(hashPack.hashes) == 0 { glog.V(logger.Debug).Infof("%v: no available hashes", p) select { case d.processCh <- false: case <-d.cancelCh: } // Error out if no hashes were retrieved at all if !gotHashes { return errStallingPeer } return nil } gotHashes = true // Otherwise insert all the new hashes, aborting in case of junk glog.V(logger.Detail).Infof("%v: inserting %d hashes from #%d", p, len(hashPack.hashes), from) inserts := d.queue.Insert(hashPack.hashes, true) if len(inserts) != len(hashPack.hashes) { glog.V(logger.Debug).Infof("%v: stale hashes", p) return errBadPeer } // Notify the block fetcher of new hashes, but stop if queue is full cont := d.queue.Pending() < maxQueuedHashes select { case d.processCh <- cont: default: } if !cont { return nil } // Queue not yet full, fetch the next batch from += uint64(len(hashPack.hashes)) getHashes(from) case <-timeout.C: glog.V(logger.Debug).Infof("%v: hash request timed out", p) return errTimeout } } } // fetchBlocks iteratively downloads the scheduled hashes, taking any available // peers, reserving a chunk of blocks for each, waiting for delivery and also // periodically checking for timeouts. func (d *Downloader) fetchBlocks(from uint64) error { glog.V(logger.Debug).Infof("Downloading blocks from #%d", from) defer glog.V(logger.Debug).Infof("Block download terminated") // Create a timeout timer for scheduling expiration tasks ticker := time.NewTicker(100 * time.Millisecond) defer ticker.Stop() update := make(chan struct{}, 1) // Prepare the queue and fetch blocks until the hash fetcher's done d.queue.Prepare(from) finished := false for { select { case <-d.cancelCh: return errCancelBlockFetch case blockPack := <-d.blockCh: // If the peer was previously banned and failed to deliver it's pack // in a reasonable time frame, ignore it's message. if peer := d.peers.Peer(blockPack.peerId); peer != nil { // Deliver the received chunk of blocks, and demote in case of errors err := d.queue.Deliver(blockPack.peerId, blockPack.blocks) switch err { case nil: // If no blocks were delivered, demote the peer (need the delivery above) if len(blockPack.blocks) == 0 { peer.Demote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: no blocks delivered", peer) break } // All was successful, promote the peer and potentially start processing peer.Promote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: delivered %d blocks", peer, len(blockPack.blocks)) go d.process() case errInvalidChain: // The hash chain is invalid (blocks are not ordered properly), abort return err case errNoFetchesPending: // Peer probably timed out with its delivery but came through // in the end, demote, but allow to to pull from this peer. peer.Demote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: out of bound delivery", peer) case errStaleDelivery: // Delivered something completely else than requested, usually // caused by a timeout and delivery during a new sync cycle. // Don't set it to idle as the original request should still be // in flight. peer.Demote() glog.V(logger.Detail).Infof("%s: stale delivery", peer) default: // Peer did something semi-useful, demote but keep it around peer.Demote() peer.SetIdle() glog.V(logger.Detail).Infof("%s: delivery partially failed: %v", peer, err) go d.process() } } // Blocks arrived, try to update the progress select { case update <- struct{}{}: default: } case cont := <-d.processCh: // The hash fetcher sent a continuation flag, check if it's done if !cont { finished = true } // Hashes arrive, try to update the progress select { case update <- struct{}{}: default: } case <-ticker.C: // Sanity check update the progress select { case update <- struct{}{}: default: } case <-update: // Short circuit if we lost all our peers if d.peers.Len() == 0 { return errNoPeers } // Check for block request timeouts and demote the responsible peers for _, pid := range d.queue.Expire(blockHardTTL) { if peer := d.peers.Peer(pid); peer != nil { peer.Demote() glog.V(logger.Detail).Infof("%s: block delivery timeout", peer) } } // If there's noting more to fetch, wait or terminate if d.queue.Pending() == 0 { if d.queue.InFlight() == 0 && finished { glog.V(logger.Debug).Infof("Block fetching completed") return nil } break } // Send a download request to all idle peers, until throttled for _, peer := range d.peers.IdlePeers() { // Short circuit if throttling activated if d.queue.Throttle() { break } // Reserve a chunk of hashes for a peer. A nil can mean either that // no more hashes are available, or that the peer is known not to // have them. request := d.queue.Reserve(peer, peer.Capacity()) if request == nil { continue } if glog.V(logger.Detail) { glog.Infof("%s: requesting %d blocks", peer, len(request.Hashes)) } // Fetch the chunk and make sure any errors return the hashes to the queue if err := peer.Fetch(request); err != nil { glog.V(logger.Error).Infof("%v: fetch failed, rescheduling", peer) d.queue.Cancel(request) } } // Make sure that we have peers available for fetching. If all peers have been tried // and all failed throw an error if !d.queue.Throttle() && d.queue.InFlight() == 0 { return errPeersUnavailable } } } } // banBlocks retrieves a batch of blocks from a peer feeding us invalid hashes, // and bans the head of the retrieved batch. // // This method only fetches one single batch as the goal is not ban an entire // (potentially long) invalid chain - wasting a lot of time in the meanwhile -, // but rather to gradually build up a blacklist if the peer keeps reconnecting. func (d *Downloader) banBlocks(peerId string, head common.Hash) error { glog.V(logger.Debug).Infof("Banning a batch out of %d blocks from %s", d.queue.Pending(), peerId) // Ask the peer being banned for a batch of blocks from the banning point peer := d.peers.Peer(peerId) if peer == nil { return nil } request := d.queue.Reserve(peer, MaxBlockFetch) if request == nil { return nil } if err := peer.Fetch(request); err != nil { return err } // Wait a bit for the reply to arrive, and ban if done so timeout := time.After(blockHardTTL) for { select { case <-d.cancelCh: return errCancelBlockFetch case <-timeout: return errTimeout case <-d.hashCh: // Out of bounds hashes received, ignore them case blockPack := <-d.blockCh: blocks := blockPack.blocks // Short circuit if it's a stale cross check if len(blocks) == 1 { block := blocks[0] if _, ok := d.checks[block.Hash()]; ok { delete(d.checks, block.Hash()) break } } // Short circuit if it's not from the peer being banned if blockPack.peerId != peerId { break } // Short circuit if no blocks were returned if len(blocks) == 0 { return errors.New("no blocks returned to ban") } // Reconstruct the original chain order and ensure we're banning the correct blocks types.BlockBy(types.Number).Sort(blocks) if bytes.Compare(blocks[0].Hash().Bytes(), head.Bytes()) != 0 { return errors.New("head block not the banned one") } index := 0 for _, block := range blocks[1:] { if bytes.Compare(block.ParentHash().Bytes(), blocks[index].Hash().Bytes()) != 0 { break } index++ } // Ban the head hash and phase out any excess d.banned.Add(blocks[index].Hash()) for d.banned.Size() > maxBannedHashes { var evacuate common.Hash d.banned.Each(func(item interface{}) bool { // Skip any hard coded bans if core.BadHashes[item.(common.Hash)] { return true } evacuate = item.(common.Hash) return false }) d.banned.Remove(evacuate) } glog.V(logger.Debug).Infof("Banned %d blocks from: %s", index+1, peerId) return nil } } } // process takes blocks from the queue and tries to import them into the chain. // // The algorithmic flow is as follows: // - The `processing` flag is swapped to 1 to ensure singleton access // - The current `cancel` channel is retrieved to detect sync abortions // - Blocks are iteratively taken from the cache and inserted into the chain // - When the cache becomes empty, insertion stops // - The `processing` flag is swapped back to 0 // - A post-exit check is made whether new blocks became available // - This step is important: it handles a potential race condition between // checking for no more work, and releasing the processing "mutex". In // between these state changes, a block may have arrived, but a processing // attempt denied, so we need to re-enter to ensure the block isn't left // to idle in the cache. func (d *Downloader) process() { // Make sure only one goroutine is ever allowed to process blocks at once if !atomic.CompareAndSwapInt32(&d.processing, 0, 1) { return } // If the processor just exited, but there are freshly pending items, try to // reenter. This is needed because the goroutine spinned up for processing // the fresh blocks might have been rejected entry to to this present thread // not yet releasing the `processing` state. defer func() { if atomic.LoadInt32(&d.interrupt) == 0 && d.queue.GetHeadBlock() != nil { d.process() } }() // Release the lock upon exit (note, before checking for reentry!), and set // the import statistics to zero. defer func() { d.importLock.Lock() d.importQueue = nil d.importDone = 0 d.importLock.Unlock() atomic.StoreInt32(&d.processing, 0) }() // Repeat the processing as long as there are blocks to import for { // Fetch the next batch of blocks blocks := d.queue.TakeBlocks() if len(blocks) == 0 { return } // Reset the import statistics d.importLock.Lock() d.importStart = time.Now() d.importQueue = blocks d.importDone = 0 d.importLock.Unlock() // Actually import the blocks glog.V(logger.Debug).Infof("Inserting chain with %d blocks (#%v - #%v)\n", len(blocks), blocks[0].RawBlock.Number(), blocks[len(blocks)-1].RawBlock.Number()) for len(blocks) != 0 { // Check for any termination requests if atomic.LoadInt32(&d.interrupt) == 1 { return } // Retrieve the first batch of blocks to insert max := int(math.Min(float64(len(blocks)), float64(maxBlockProcess))) raw := make(types.Blocks, 0, max) for _, block := range blocks[:max] { raw = append(raw, block.RawBlock) } // Try to inset the blocks, drop the originating peer if there's an error index, err := d.insertChain(raw) if err != nil { glog.V(logger.Debug).Infof("Block #%d import failed: %v", raw[index].NumberU64(), err) d.dropPeer(blocks[index].OriginPeer) d.cancel() return } blocks = blocks[max:] } } } // DeliverBlocks injects a new batch of blocks received from a remote node. // This is usually invoked through the BlocksMsg by the protocol handler. func (d *Downloader) DeliverBlocks(id string, blocks []*types.Block) error { // Make sure the downloader is active if atomic.LoadInt32(&d.synchronising) == 0 { return errNoSyncActive } // Deliver or abort if the sync is canceled while queuing d.cancelLock.RLock() cancel := d.cancelCh d.cancelLock.RUnlock() select { case d.blockCh <- blockPack{id, blocks}: return nil case <-cancel: return errNoSyncActive } } // DeliverHashes injects a new batch of hashes received from a remote node into // the download schedule. This is usually invoked through the BlockHashesMsg by // the protocol handler. func (d *Downloader) DeliverHashes(id string, hashes []common.Hash) error { // Make sure the downloader is active if atomic.LoadInt32(&d.synchronising) == 0 { return errNoSyncActive } // Deliver or abort if the sync is canceled while queuing d.cancelLock.RLock() cancel := d.cancelCh d.cancelLock.RUnlock() select { case d.hashCh <- hashPack{id, hashes}: return nil case <-cancel: return errNoSyncActive } }