aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/libsecp256k1/src/secp256k1.c
blob: 7d637bfad1c5967a1001b2248d71947c76cfbd35 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/**********************************************************************
 * Copyright (c) 2013-2015 Pieter Wuille                              *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#include "include/secp256k1.h"

#include "util.h"
#include "num_impl.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "group_impl.h"
#include "ecmult_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_gen_impl.h"
#include "ecdsa_impl.h"
#include "eckey_impl.h"
#include "hash_impl.h"

#define ARG_CHECK(cond) do { \
    if (EXPECT(!(cond), 0)) { \
        secp256k1_callback_call(&ctx->illegal_callback, #cond); \
        return 0; \
    } \
} while(0)

static void default_illegal_callback_fn(const char* str, void* data) {
    fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
    abort();
}

static const secp256k1_callback default_illegal_callback = {
    default_illegal_callback_fn,
    NULL
};

static void default_error_callback_fn(const char* str, void* data) {
    fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
    abort();
}

static const secp256k1_callback default_error_callback = {
    default_error_callback_fn,
    NULL
};


struct secp256k1_context_struct {
    secp256k1_ecmult_context ecmult_ctx;
    secp256k1_ecmult_gen_context ecmult_gen_ctx;
    secp256k1_callback illegal_callback;
    secp256k1_callback error_callback;
};

secp256k1_context* secp256k1_context_create(unsigned int flags) {
    secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context));
    ret->illegal_callback = default_illegal_callback;
    ret->error_callback = default_error_callback;

    if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) {
            secp256k1_callback_call(&ret->illegal_callback,
                                    "Invalid flags");
            free(ret);
            return NULL;
    }

    secp256k1_ecmult_context_init(&ret->ecmult_ctx);
    secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);

    if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) {
        secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
    }
    if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) {
        secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
    }

    return ret;
}

secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
    secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context));
    ret->illegal_callback = ctx->illegal_callback;
    ret->error_callback = ctx->error_callback;
    secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
    secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback);
    return ret;
}

void secp256k1_context_destroy(secp256k1_context* ctx) {
    if (ctx != NULL) {
        secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
        secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);

        free(ctx);
    }
}

void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
    if (fun == NULL) {
        fun = default_illegal_callback_fn;
    }
    ctx->illegal_callback.fn = fun;
    ctx->illegal_callback.data = data;
}

void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
    if (fun == NULL) {
        fun = default_error_callback_fn;
    }
    ctx->error_callback.fn = fun;
    ctx->error_callback.data = data;
}

static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
    if (sizeof(secp256k1_ge_storage) == 64) {
        /* When the secp256k1_ge_storage type is exactly 64 byte, use its
         * representation inside secp256k1_pubkey, as conversion is very fast.
         * Note that secp256k1_pubkey_save must use the same representation. */
        secp256k1_ge_storage s;
        memcpy(&s, &pubkey->data[0], 64);
        secp256k1_ge_from_storage(ge, &s);
    } else {
        /* Otherwise, fall back to 32-byte big endian for X and Y. */
        secp256k1_fe x, y;
        secp256k1_fe_set_b32(&x, pubkey->data);
        secp256k1_fe_set_b32(&y, pubkey->data + 32);
        secp256k1_ge_set_xy(ge, &x, &y);
    }
    ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
    return 1;
}

static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
    if (sizeof(secp256k1_ge_storage) == 64) {
        secp256k1_ge_storage s;
        secp256k1_ge_to_storage(&s, ge);
        memcpy(&pubkey->data[0], &s, 64);
    } else {
        VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
        secp256k1_fe_normalize_var(&ge->x);
        secp256k1_fe_normalize_var(&ge->y);
        secp256k1_fe_get_b32(pubkey->data, &ge->x);
        secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
    }
}

int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
    secp256k1_ge Q;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(pubkey != NULL);
    memset(pubkey, 0, sizeof(*pubkey));
    ARG_CHECK(input != NULL);
    if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
        return 0;
    }
    secp256k1_pubkey_save(pubkey, &Q);
    secp256k1_ge_clear(&Q);
    return 1;
}

int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
    secp256k1_ge Q;
    size_t len;
    int ret = 0;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(outputlen != NULL);
    ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
    len = *outputlen;
    *outputlen = 0;
    ARG_CHECK(output != NULL);
    memset(output, 0, len);
    ARG_CHECK(pubkey != NULL);
    ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION);
    if (secp256k1_pubkey_load(ctx, &Q, pubkey)) {
        ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION);
        if (ret) {
            *outputlen = len;
        }
    }
    return ret;
}

static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
    (void)ctx;
    if (sizeof(secp256k1_scalar) == 32) {
        /* When the secp256k1_scalar type is exactly 32 byte, use its
         * representation inside secp256k1_ecdsa_signature, as conversion is very fast.
         * Note that secp256k1_ecdsa_signature_save must use the same representation. */
        memcpy(r, &sig->data[0], 32);
        memcpy(s, &sig->data[32], 32);
    } else {
        secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
        secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
    }
}

static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
    if (sizeof(secp256k1_scalar) == 32) {
        memcpy(&sig->data[0], r, 32);
        memcpy(&sig->data[32], s, 32);
    } else {
        secp256k1_scalar_get_b32(&sig->data[0], r);
        secp256k1_scalar_get_b32(&sig->data[32], s);
    }
}

int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
    secp256k1_scalar r, s;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(sig != NULL);
    ARG_CHECK(input != NULL);

    if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
        secp256k1_ecdsa_signature_save(sig, &r, &s);
        return 1;
    } else {
        memset(sig, 0, sizeof(*sig));
        return 0;
    }
}

int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) {
    secp256k1_scalar r, s;
    int ret = 1;
    int overflow = 0;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(sig != NULL);
    ARG_CHECK(input64 != NULL);

    secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
    ret &= !overflow;
    secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
    ret &= !overflow;
    if (ret) {
        secp256k1_ecdsa_signature_save(sig, &r, &s);
    } else {
        memset(sig, 0, sizeof(*sig));
    }
    return ret;
}

int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
    secp256k1_scalar r, s;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(output != NULL);
    ARG_CHECK(outputlen != NULL);
    ARG_CHECK(sig != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
    return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
}

int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
    secp256k1_scalar r, s;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(output64 != NULL);
    ARG_CHECK(sig != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
    secp256k1_scalar_get_b32(&output64[0], &r);
    secp256k1_scalar_get_b32(&output64[32], &s);
    return 1;
}

int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) {
    secp256k1_scalar r, s;
    int ret = 0;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(sigin != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin);
    ret = secp256k1_scalar_is_high(&s);
    if (sigout != NULL) {
        if (ret) {
            secp256k1_scalar_negate(&s, &s);
        }
        secp256k1_ecdsa_signature_save(sigout, &r, &s);
    }

    return ret;
}

int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
    secp256k1_ge q;
    secp256k1_scalar r, s;
    secp256k1_scalar m;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(msg32 != NULL);
    ARG_CHECK(sig != NULL);
    ARG_CHECK(pubkey != NULL);

    secp256k1_scalar_set_b32(&m, msg32, NULL);
    secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
    return (!secp256k1_scalar_is_high(&s) &&
            secp256k1_pubkey_load(ctx, &q, pubkey) &&
            secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
}

static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
   unsigned char keydata[112];
   int keylen = 64;
   secp256k1_rfc6979_hmac_sha256_t rng;
   unsigned int i;
   /* We feed a byte array to the PRNG as input, consisting of:
    * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
    * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
    * - optionally 16 extra bytes with the algorithm name.
    * Because the arguments have distinct fixed lengths it is not possible for
    *  different argument mixtures to emulate each other and result in the same
    *  nonces.
    */
   memcpy(keydata, key32, 32);
   memcpy(keydata + 32, msg32, 32);
   if (data != NULL) {
       memcpy(keydata + 64, data, 32);
       keylen = 96;
   }
   if (algo16 != NULL) {
       memcpy(keydata + keylen, algo16, 16);
       keylen += 16;
   }
   secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen);
   memset(keydata, 0, sizeof(keydata));
   for (i = 0; i <= counter; i++) {
       secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
   }
   secp256k1_rfc6979_hmac_sha256_finalize(&rng);
   return 1;
}

const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;

int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
    secp256k1_scalar r, s;
    secp256k1_scalar sec, non, msg;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    ARG_CHECK(msg32 != NULL);
    ARG_CHECK(signature != NULL);
    ARG_CHECK(seckey != NULL);
    if (noncefp == NULL) {
        noncefp = secp256k1_nonce_function_default;
    }

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    /* Fail if the secret key is invalid. */
    if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
        unsigned char nonce32[32];
        unsigned int count = 0;
        secp256k1_scalar_set_b32(&msg, msg32, NULL);
        while (1) {
            ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
            if (!ret) {
                break;
            }
            secp256k1_scalar_set_b32(&non, nonce32, &overflow);
            if (!overflow && !secp256k1_scalar_is_zero(&non)) {
                if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) {
                    break;
                }
            }
            count++;
        }
        memset(nonce32, 0, 32);
        secp256k1_scalar_clear(&msg);
        secp256k1_scalar_clear(&non);
        secp256k1_scalar_clear(&sec);
    }
    if (ret) {
        secp256k1_ecdsa_signature_save(signature, &r, &s);
    } else {
        memset(signature, 0, sizeof(*signature));
    }
    return ret;
}

int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
    secp256k1_scalar sec;
    int ret;
    int overflow;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    ret = !overflow && !secp256k1_scalar_is_zero(&sec);
    secp256k1_scalar_clear(&sec);
    return ret;
}

int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
    secp256k1_gej pj;
    secp256k1_ge p;
    secp256k1_scalar sec;
    int overflow;
    int ret = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(pubkey != NULL);
    memset(pubkey, 0, sizeof(*pubkey));
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    ARG_CHECK(seckey != NULL);

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
    if (ret) {
        secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
        secp256k1_ge_set_gej(&p, &pj);
        secp256k1_pubkey_save(pubkey, &p);
    }
    secp256k1_scalar_clear(&sec);
    return ret;
}

int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar term;
    secp256k1_scalar sec;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&term, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);

    ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
    memset(seckey, 0, 32);
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&term);
    return ret;
}

int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
    secp256k1_ge p;
    secp256k1_scalar term;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(pubkey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&term, tweak, &overflow);
    ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
    memset(pubkey, 0, sizeof(*pubkey));
    if (ret) {
        if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
            secp256k1_pubkey_save(pubkey, &p);
        } else {
            ret = 0;
        }
    }

    return ret;
}

int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar factor;
    secp256k1_scalar sec;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&factor, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);
    ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
    memset(seckey, 0, 32);
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&factor);
    return ret;
}

int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
    secp256k1_ge p;
    secp256k1_scalar factor;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(pubkey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&factor, tweak, &overflow);
    ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
    memset(pubkey, 0, sizeof(*pubkey));
    if (ret) {
        if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) {
            secp256k1_pubkey_save(pubkey, &p);
        } else {
            ret = 0;
        }
    }

    return ret;
}

int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
    return 1;
}

int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) {
    size_t i;
    secp256k1_gej Qj;
    secp256k1_ge Q;

    ARG_CHECK(pubnonce != NULL);
    memset(pubnonce, 0, sizeof(*pubnonce));
    ARG_CHECK(n >= 1);
    ARG_CHECK(pubnonces != NULL);

    secp256k1_gej_set_infinity(&Qj);

    for (i = 0; i < n; i++) {
        secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
        secp256k1_gej_add_ge(&Qj, &Qj, &Q);
    }
    if (secp256k1_gej_is_infinity(&Qj)) {
        return 0;
    }
    secp256k1_ge_set_gej(&Q, &Qj);
    secp256k1_pubkey_save(pubnonce, &Q);
    return 1;
}

#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/main_impl.h"
#endif

#ifdef ENABLE_MODULE_SCHNORR
# include "modules/schnorr/main_impl.h"
#endif

#ifdef ENABLE_MODULE_RECOVERY
# include "modules/recovery/main_impl.h"
#endif