aboutsummaryrefslogtreecommitdiffstats
path: root/eth/downloader/downloader_test.go
blob: c328e7d9abfd276403ab42018718b79bd86d7e89 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
package downloader

import (
    "encoding/binary"
    "fmt"
    "math/big"
    "testing"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/core"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/event"
)

var (
    knownHash   = common.Hash{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
    unknownHash = common.Hash{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}
    bannedHash  = common.Hash{5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

    genesis = createBlock(1, common.Hash{}, knownHash)
)

func createHashes(start, amount int) (hashes []common.Hash) {
    hashes = make([]common.Hash, amount+1)
    hashes[len(hashes)-1] = knownHash

    for i := range hashes[:len(hashes)-1] {
        binary.BigEndian.PutUint64(hashes[i][:8], uint64(start+i+2))
    }
    return
}

func createBlock(i int, parent, hash common.Hash) *types.Block {
    header := &types.Header{Number: big.NewInt(int64(i))}
    block := types.NewBlockWithHeader(header)
    block.HeaderHash = hash
    block.ParentHeaderHash = parent
    return block
}

func createBlocksFromHashes(hashes []common.Hash) map[common.Hash]*types.Block {
    blocks := make(map[common.Hash]*types.Block)
    for i := 0; i < len(hashes); i++ {
        parent := knownHash
        if i < len(hashes)-1 {
            parent = hashes[i+1]
        }
        blocks[hashes[i]] = createBlock(len(hashes)-i, parent, hashes[i])
    }
    return blocks
}

type downloadTester struct {
    downloader *Downloader

    ownHashes  []common.Hash                           // Hash chain belonging to the tester
    ownBlocks  map[common.Hash]*types.Block            // Blocks belonging to the tester
    peerHashes map[string][]common.Hash                // Hash chain belonging to different test peers
    peerBlocks map[string]map[common.Hash]*types.Block // Blocks belonging to different test peers

    maxHashFetch int // Overrides the maximum number of retrieved hashes
}

func newTester() *downloadTester {
    tester := &downloadTester{
        ownHashes:  []common.Hash{knownHash},
        ownBlocks:  map[common.Hash]*types.Block{knownHash: genesis},
        peerHashes: make(map[string][]common.Hash),
        peerBlocks: make(map[string]map[common.Hash]*types.Block),
    }
    var mux event.TypeMux
    downloader := New(&mux, tester.hasBlock, tester.getBlock, tester.dropPeer)
    tester.downloader = downloader

    return tester
}

// syncTake is starts synchronising with a remote peer, but concurrently it also
// starts fetching blocks that the downloader retrieved. IT blocks until both go
// routines terminate.
func (dl *downloadTester) syncTake(peerId string, head common.Hash) ([]*Block, error) {
    // Start a block collector to take blocks as they become available
    done := make(chan struct{})
    took := []*Block{}
    go func() {
        for running := true; running; {
            select {
            case <-done:
                running = false
            default:
                time.Sleep(time.Millisecond)
            }
            // Take a batch of blocks and accumulate
            blocks := dl.downloader.TakeBlocks()
            for _, block := range blocks {
                dl.ownHashes = append(dl.ownHashes, block.RawBlock.Hash())
                dl.ownBlocks[block.RawBlock.Hash()] = block.RawBlock
            }
            took = append(took, blocks...)
        }
        done <- struct{}{}
    }()
    // Start the downloading, sync the taker and return
    err := dl.downloader.synchronise(peerId, head)

    done <- struct{}{}
    <-done

    return took, err
}

// hasBlock checks if a block is present in the testers canonical chain.
func (dl *downloadTester) hasBlock(hash common.Hash) bool {
    return dl.getBlock(hash) != nil
}

// getBlock retrieves a block from the testers canonical chain.
func (dl *downloadTester) getBlock(hash common.Hash) *types.Block {
    return dl.ownBlocks[hash]
}

// newPeer registers a new block download source into the downloader.
func (dl *downloadTester) newPeer(id string, hashes []common.Hash, blocks map[common.Hash]*types.Block) error {
    err := dl.downloader.RegisterPeer(id, hashes[0], dl.peerGetHashesFn(id), dl.peerGetBlocksFn(id))
    if err == nil {
        // Assign the owned hashes and blocks to the peer
        dl.peerHashes[id] = hashes
        dl.peerBlocks[id] = blocks
    }
    return err
}

// dropPeer simulates a hard peer removal from the connection pool.
func (dl *downloadTester) dropPeer(id string) {
    delete(dl.peerHashes, id)
    delete(dl.peerBlocks, id)

    dl.downloader.UnregisterPeer(id)
}

// peerGetBlocksFn constructs a getHashes function associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of hashes from the particularly requested peer.
func (dl *downloadTester) peerGetHashesFn(id string) func(head common.Hash) error {
    return func(head common.Hash) error {
        limit := MaxHashFetch
        if dl.maxHashFetch > 0 {
            limit = dl.maxHashFetch
        }
        // Gather the next batch of hashes
        hashes := dl.peerHashes[id]
        result := make([]common.Hash, 0, limit)
        for i, hash := range hashes {
            if hash == head {
                i++
                for len(result) < cap(result) && i < len(hashes) {
                    result = append(result, hashes[i])
                    i++
                }
                break
            }
        }
        // Delay delivery a bit to allow attacks to unfold
        go func() {
            time.Sleep(time.Millisecond)
            dl.downloader.DeliverHashes(id, result)
        }()
        return nil
    }
}

// peerGetBlocksFn constructs a getBlocks function associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of blocks from the particularly requested peer.
func (dl *downloadTester) peerGetBlocksFn(id string) func([]common.Hash) error {
    return func(hashes []common.Hash) error {
        blocks := dl.peerBlocks[id]
        result := make([]*types.Block, 0, len(hashes))
        for _, hash := range hashes {
            if block, ok := blocks[hash]; ok {
                result = append(result, block)
            }
        }
        go dl.downloader.DeliverBlocks(id, result)

        return nil
    }
}

// Tests that simple synchronization, without throttling from a good peer works.
func TestSynchronisation(t *testing.T) {
    // Create a small enough block chain to download and the tester
    targetBlocks := blockCacheLimit - 15
    hashes := createHashes(0, targetBlocks)
    blocks := createBlocksFromHashes(hashes)

    tester := newTester()
    tester.newPeer("peer", hashes, blocks)

    // Synchronise with the peer and make sure all blocks were retrieved
    if err := tester.downloader.synchronise("peer", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
    if queued := len(tester.downloader.queue.blockPool); queued != targetBlocks {
        t.Fatalf("synchronised block mismatch: have %v, want %v", queued, targetBlocks)
    }
}

// Tests that the synchronized blocks can be correctly retrieved.
func TestBlockTaking(t *testing.T) {
    // Create a small enough block chain to download and the tester
    targetBlocks := blockCacheLimit - 15
    hashes := createHashes(0, targetBlocks)
    blocks := createBlocksFromHashes(hashes)

    tester := newTester()
    tester.newPeer("peer", hashes, blocks)

    // Synchronise with the peer and test block retrieval
    if err := tester.downloader.synchronise("peer", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
    if took := tester.downloader.TakeBlocks(); len(took) != targetBlocks {
        t.Fatalf("took block mismatch: have %v, want %v", len(took), targetBlocks)
    }
}

// Tests that an inactive downloader will not accept incoming hashes and blocks.
func TestInactiveDownloader(t *testing.T) {
    tester := newTester()

    // Check that neither hashes nor blocks are accepted
    if err := tester.downloader.DeliverHashes("bad peer", []common.Hash{}); err != errNoSyncActive {
        t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
    }
    if err := tester.downloader.DeliverBlocks("bad peer", []*types.Block{}); err != errNoSyncActive {
        t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
    }
}

// Tests that a canceled download wipes all previously accumulated state.
func TestCancel(t *testing.T) {
    // Create a small enough block chain to download and the tester
    targetBlocks := blockCacheLimit - 15
    hashes := createHashes(0, targetBlocks)
    blocks := createBlocksFromHashes(hashes)

    tester := newTester()
    tester.newPeer("peer", hashes, blocks)

    // Synchronise with the peer, but cancel afterwards
    if err := tester.downloader.synchronise("peer", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
    if !tester.downloader.Cancel() {
        t.Fatalf("cancel operation failed")
    }
    // Make sure the queue reports empty and no blocks can be taken
    hashCount, blockCount := tester.downloader.queue.Size()
    if hashCount > 0 || blockCount > 0 {
        t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount)
    }
    if took := tester.downloader.TakeBlocks(); len(took) != 0 {
        t.Errorf("taken blocks mismatch: have %d, want %d", len(took), 0)
    }
}

// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling(t *testing.T) {
    // Create a long block chain to download and the tester
    targetBlocks := 8 * blockCacheLimit
    hashes := createHashes(0, targetBlocks)
    blocks := createBlocksFromHashes(hashes)

    tester := newTester()
    tester.newPeer("peer", hashes, blocks)

    // Start a synchronisation concurrently
    errc := make(chan error)
    go func() {
        errc <- tester.downloader.synchronise("peer", hashes[0])
    }()
    // Iteratively take some blocks, always checking the retrieval count
    for total := 0; total < targetBlocks; {
        // Wait a bit for sync to complete
        for start := time.Now(); time.Since(start) < 3*time.Second; {
            time.Sleep(25 * time.Millisecond)
            if len(tester.downloader.queue.blockPool) == blockCacheLimit {
                break
            }
        }
        // Fetch the next batch of blocks
        took := tester.downloader.TakeBlocks()
        if len(took) != blockCacheLimit {
            t.Fatalf("block count mismatch: have %v, want %v", len(took), blockCacheLimit)
        }
        total += len(took)
        if total > targetBlocks {
            t.Fatalf("target block count mismatch: have %v, want %v", total, targetBlocks)
        }
    }
    if err := <-errc; err != nil {
        t.Fatalf("block synchronization failed: %v", err)
    }
}

// Tests that if a peer returns an invalid chain with a block pointing to a non-
// existing parent, it is correctly detected and handled.
func TestNonExistingParentAttack(t *testing.T) {
    // Forge a single-link chain with a forged header
    hashes := createHashes(0, 1)
    blocks := createBlocksFromHashes(hashes)

    forged := blocks[hashes[0]]
    forged.ParentHeaderHash = unknownHash

    // Try and sync with the malicious node and check that it fails
    tester := newTester()
    tester.newPeer("attack", hashes, blocks)
    if err := tester.downloader.synchronise("attack", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
    bs := tester.downloader.TakeBlocks()
    if len(bs) != 1 {
        t.Fatalf("retrieved block mismatch: have %v, want %v", len(bs), 1)
    }
    if tester.hasBlock(bs[0].RawBlock.ParentHash()) {
        t.Fatalf("tester knows about the unknown hash")
    }
    tester.downloader.Cancel()

    // Reconstruct a valid chain, and try to synchronize with it
    forged.ParentHeaderHash = knownHash
    tester.newPeer("valid", hashes, blocks)
    if err := tester.downloader.synchronise("valid", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
    bs = tester.downloader.TakeBlocks()
    if len(bs) != 1 {
        t.Fatalf("retrieved block mismatch: have %v, want %v", len(bs), 1)
    }
    if !tester.hasBlock(bs[0].RawBlock.ParentHash()) {
        t.Fatalf("tester doesn't know about the origin hash")
    }
}

// Tests that if a malicious peers keeps sending us repeating hashes, we don't
// loop indefinitely.
func TestRepeatingHashAttack(t *testing.T) {
    // Create a valid chain, but drop the last link
    hashes := createHashes(0, blockCacheLimit)
    blocks := createBlocksFromHashes(hashes)
    forged := hashes[:len(hashes)-1]

    // Try and sync with the malicious node
    tester := newTester()
    tester.newPeer("attack", forged, blocks)

    errc := make(chan error)
    go func() {
        errc <- tester.downloader.synchronise("attack", hashes[0])
    }()

    // Make sure that syncing returns and does so with a failure
    select {
    case <-time.After(time.Second):
        t.Fatalf("synchronisation blocked")
    case err := <-errc:
        if err == nil {
            t.Fatalf("synchronisation succeeded")
        }
    }
    // Ensure that a valid chain can still pass sync
    tester.newPeer("valid", hashes, blocks)
    if err := tester.downloader.synchronise("valid", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
}

// Tests that if a malicious peers returns a non-existent block hash, it should
// eventually time out and the sync reattempted.
func TestNonExistingBlockAttack(t *testing.T) {
    // Create a valid chain, but forge the last link
    hashes := createHashes(0, blockCacheLimit)
    blocks := createBlocksFromHashes(hashes)
    origin := hashes[len(hashes)/2]

    hashes[len(hashes)/2] = unknownHash

    // Try and sync with the malicious node and check that it fails
    tester := newTester()
    tester.newPeer("attack", hashes, blocks)
    if err := tester.downloader.synchronise("attack", hashes[0]); err != errPeersUnavailable {
        t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errPeersUnavailable)
    }
    // Ensure that a valid chain can still pass sync
    hashes[len(hashes)/2] = origin
    tester.newPeer("valid", hashes, blocks)
    if err := tester.downloader.synchronise("valid", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
}

// Tests that if a malicious peer is returning hashes in a weird order, that the
// sync throttler doesn't choke on them waiting for the valid blocks.
func TestInvalidHashOrderAttack(t *testing.T) {
    // Create a valid long chain, but reverse some hashes within
    hashes := createHashes(0, 4*blockCacheLimit)
    blocks := createBlocksFromHashes(hashes)

    chunk1 := make([]common.Hash, blockCacheLimit)
    chunk2 := make([]common.Hash, blockCacheLimit)
    copy(chunk1, hashes[blockCacheLimit:2*blockCacheLimit])
    copy(chunk2, hashes[2*blockCacheLimit:3*blockCacheLimit])

    reverse := make([]common.Hash, len(hashes))
    copy(reverse, hashes)
    copy(reverse[2*blockCacheLimit:], chunk1)
    copy(reverse[blockCacheLimit:], chunk2)

    // Try and sync with the malicious node and check that it fails
    tester := newTester()
    tester.newPeer("attack", reverse, blocks)
    if _, err := tester.syncTake("attack", reverse[0]); err != errInvalidChain {
        t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
    }
    // Ensure that a valid chain can still pass sync
    tester.newPeer("valid", hashes, blocks)
    if _, err := tester.syncTake("valid", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
}

// Tests that if a malicious peer makes up a random hash chain and tries to push
// indefinitely, it actually gets caught with it.
func TestMadeupHashChainAttack(t *testing.T) {
    blockSoftTTL = 100 * time.Millisecond
    crossCheckCycle = 25 * time.Millisecond

    // Create a long chain of hashes without backing blocks
    hashes := createHashes(0, 1024*blockCacheLimit)

    // Try and sync with the malicious node and check that it fails
    tester := newTester()
    tester.newPeer("attack", hashes, nil)
    if _, err := tester.syncTake("attack", hashes[0]); err != errCrossCheckFailed {
        t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
    }
}

// Tests that if a malicious peer makes up a random hash chain, and tries to push
// indefinitely, one hash at a time, it actually gets caught with it. The reason
// this is separate from the classical made up chain attack is that sending hashes
// one by one prevents reliable block/parent verification.
func TestMadeupHashChainDrippingAttack(t *testing.T) {
    // Create a random chain of hashes to drip
    hashes := createHashes(0, 16*blockCacheLimit)
    tester := newTester()

    // Try and sync with the attacker, one hash at a time
    tester.maxHashFetch = 1
    tester.newPeer("attack", hashes, nil)
    if _, err := tester.syncTake("attack", hashes[0]); err != errStallingPeer {
        t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
    }
}

// Tests that if a malicious peer makes up a random block chain, and tried to
// push indefinitely, it actually gets caught with it.
func TestMadeupBlockChainAttack(t *testing.T) {
    defaultBlockTTL := blockSoftTTL
    defaultCrossCheckCycle := crossCheckCycle

    blockSoftTTL = 100 * time.Millisecond
    crossCheckCycle = 25 * time.Millisecond

    // Create a long chain of blocks and simulate an invalid chain by dropping every second
    hashes := createHashes(0, 16*blockCacheLimit)
    blocks := createBlocksFromHashes(hashes)

    gapped := make([]common.Hash, len(hashes)/2)
    for i := 0; i < len(gapped); i++ {
        gapped[i] = hashes[2*i]
    }
    // Try and sync with the malicious node and check that it fails
    tester := newTester()
    tester.newPeer("attack", gapped, blocks)
    if _, err := tester.syncTake("attack", gapped[0]); err != errCrossCheckFailed {
        t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
    }
    // Ensure that a valid chain can still pass sync
    blockSoftTTL = defaultBlockTTL
    crossCheckCycle = defaultCrossCheckCycle

    tester.newPeer("valid", hashes, blocks)
    if _, err := tester.syncTake("valid", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
}

// Advanced form of the above forged blockchain attack, where not only does the
// attacker make up a valid hashes for random blocks, but also forges the block
// parents to point to existing hashes.
func TestMadeupParentBlockChainAttack(t *testing.T) {
    defaultBlockTTL := blockSoftTTL
    defaultCrossCheckCycle := crossCheckCycle

    blockSoftTTL = 100 * time.Millisecond
    crossCheckCycle = 25 * time.Millisecond

    // Create a long chain of blocks and simulate an invalid chain by dropping every second
    hashes := createHashes(0, 16*blockCacheLimit)
    blocks := createBlocksFromHashes(hashes)
    forges := createBlocksFromHashes(hashes)
    for hash, block := range forges {
        block.ParentHeaderHash = hash // Simulate pointing to already known hash
    }
    // Try and sync with the malicious node and check that it fails
    tester := newTester()
    tester.newPeer("attack", hashes, forges)
    if _, err := tester.syncTake("attack", hashes[0]); err != errCrossCheckFailed {
        t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
    }
    // Ensure that a valid chain can still pass sync
    blockSoftTTL = defaultBlockTTL
    crossCheckCycle = defaultCrossCheckCycle

    tester.newPeer("valid", hashes, blocks)
    if _, err := tester.syncTake("valid", hashes[0]); err != nil {
        t.Fatalf("failed to synchronise blocks: %v", err)
    }
}

// Tests that if one/multiple malicious peers try to feed a banned blockchain to
// the downloader, it will not keep refetching the same chain indefinitely, but
// gradually block pieces of it, until it's head is also blocked.
func TestBannedChainStarvationAttack(t *testing.T) {
    // Construct a valid chain, but ban one of the hashes in it
    hashes := createHashes(0, 8*blockCacheLimit)
    hashes[len(hashes)/2+23] = bannedHash // weird index to have non multiple of ban chunk size

    blocks := createBlocksFromHashes(hashes)

    // Create the tester and ban the selected hash
    tester := newTester()
    tester.downloader.banned.Add(bannedHash)

    // Iteratively try to sync, and verify that the banned hash list grows until
    // the head of the invalid chain is blocked too.
    tester.newPeer("attack", hashes, blocks)
    for banned := tester.downloader.banned.Size(); ; {
        // Try to sync with the attacker, check hash chain failure
        if _, err := tester.syncTake("attack", hashes[0]); err != errInvalidChain {
            if tester.downloader.banned.Has(hashes[0]) && err == errBannedHead {
                break
            }
            t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
        }
        // Check that the ban list grew with at least 1 new item, or all banned
        bans := tester.downloader.banned.Size()
        if bans < banned+1 {
            t.Fatalf("ban count mismatch: have %v, want %v+", bans, banned+1)
        }
        banned = bans
    }
    // Check that after banning an entire chain, bad peers get dropped
    if err := tester.newPeer("new attacker", hashes, blocks); err != errBannedHead {
        t.Fatalf("peer registration mismatch: have %v, want %v", err, errBannedHead)
    }
    if peer := tester.downloader.peers.Peer("net attacker"); peer != nil {
        t.Fatalf("banned attacker registered: %v", peer)
    }
}

// Tests that if a peer sends excessively many/large invalid chains that are
// gradually banned, it will have an upper limit on the consumed memory and also
// the origin bad hashes will not be evacuated.
func TestBannedChainMemoryExhaustionAttack(t *testing.T) {
    // Reduce the test size a bit
    MaxBlockFetch = 4
    maxBannedHashes = 256

    // Construct a banned chain with more chunks than the ban limit
    hashes := createHashes(0, maxBannedHashes*MaxBlockFetch)
    hashes[len(hashes)-1] = bannedHash // weird index to have non multiple of ban chunk size

    blocks := createBlocksFromHashes(hashes)

    // Create the tester and ban the selected hash
    tester := newTester()
    tester.downloader.banned.Add(bannedHash)

    // Iteratively try to sync, and verify that the banned hash list grows until
    // the head of the invalid chain is blocked too.
    tester.newPeer("attack", hashes, blocks)
    for {
        // Try to sync with the attacker, check hash chain failure
        if _, err := tester.syncTake("attack", hashes[0]); err != errInvalidChain {
            t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
        }
        // Short circuit if the entire chain was banned
        if tester.downloader.banned.Has(hashes[0]) {
            break
        }
        // Otherwise ensure we never exceed the memory allowance and the hard coded bans are untouched
        if bans := tester.downloader.banned.Size(); bans > maxBannedHashes {
            t.Fatalf("ban cap exceeded: have %v, want max %v", bans, maxBannedHashes)
        }
        for hash, _ := range core.BadHashes {
            if !tester.downloader.banned.Has(hash) {
                t.Fatalf("hard coded ban evacuated: %x", hash)
            }
        }
    }
}

// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
func TestAttackerDropping(t *testing.T) {
    // Define the disconnection requirement for individual errors
    tests := []struct {
        result error
        drop   bool
    }{
        {nil, false},                 // Sync succeeded, all is well
        {errBusy, false},             // Sync is already in progress, no problem
        {errUnknownPeer, false},      // Peer is unknown, was already dropped, don't double drop
        {errBadPeer, true},           // Peer was deemed bad for some reason, drop it
        {errStallingPeer, true},      // Peer was detected to be stalling, drop it
        {errBannedHead, true},        // Peer's head hash is a known bad hash, drop it
        {errNoPeers, false},          // No peers to download from, soft race, no issue
        {errPendingQueue, false},     // There are blocks still cached, wait to exhaust, no issue
        {errTimeout, true},           // No hashes received in due time, drop the peer
        {errEmptyHashSet, true},      // No hashes were returned as a response, drop as it's a dead end
        {errPeersUnavailable, true},  // Nobody had the advertised blocks, drop the advertiser
        {errInvalidChain, true},      // Hash chain was detected as invalid, definitely drop
        {errCrossCheckFailed, true},  // Hash-origin failed to pass a block cross check, drop
        {errCancelHashFetch, false},  // Synchronisation was canceled, origin may be innocent, don't drop
        {errCancelBlockFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop
    }
    // Run the tests and check disconnection status
    tester := newTester()
    for i, tt := range tests {
        // Register a new peer and ensure it's presence
        id := fmt.Sprintf("test %d", i)
        if err := tester.newPeer(id, []common.Hash{knownHash}, nil); err != nil {
            t.Fatalf("test %d: failed to register new peer: %v", i, err)
        }
        if _, ok := tester.peerHashes[id]; !ok {
            t.Fatalf("test %d: registered peer not found", i)
        }
        // Simulate a synchronisation and check the required result
        tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }

        tester.downloader.Synchronise(id, knownHash)
        if _, ok := tester.peerHashes[id]; !ok != tt.drop {
            t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
        }
    }
}