1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
package p2p
import (
"bytes"
"crypto/ecdsa"
"fmt"
"net"
"testing"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/obscuren/ecies"
)
func TestPublicKeyEncoding(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
pub0s := crypto.FromECDSAPub(pub0)
pub1, err := ImportPublicKey(pub0s)
if err != nil {
t.Errorf("%v", err)
}
eciesPub1 := ecies.ImportECDSAPublic(pub1)
if eciesPub1 == nil {
t.Errorf("invalid ecdsa public key")
}
pub1s, err := ExportPublicKey(pub1)
if err != nil {
t.Errorf("%v", err)
}
if len(pub1s) != 64 {
t.Errorf("wrong length expect 64, got", len(pub1s))
}
pub2, err := ImportPublicKey(pub1s)
if err != nil {
t.Errorf("%v", err)
}
pub2s, err := ExportPublicKey(pub2)
if err != nil {
t.Errorf("%v", err)
}
if !bytes.Equal(pub1s, pub2s) {
t.Errorf("exports dont match")
}
pub2sEC := crypto.FromECDSAPub(pub2)
if !bytes.Equal(pub0s, pub2sEC) {
t.Errorf("exports dont match")
}
}
func TestSharedSecret(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
if err != nil {
return
}
ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
if err != nil {
return
}
t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
if !bytes.Equal(ss0, ss1) {
t.Errorf("dont match :(")
}
}
func TestCryptoHandshake(t *testing.T) {
testCryptoHandshakeWithGen(false, t)
}
func TestTokenCryptoHandshake(t *testing.T) {
testCryptoHandshakeWithGen(true, t)
}
func TestDetCryptoHandshake(t *testing.T) {
defer testlog(t).detach()
tmpkeyF := keyF
keyF = detkeyF
tmpnonceF := nonceF
nonceF = detnonceF
testCryptoHandshakeWithGen(false, t)
keyF = tmpkeyF
nonceF = tmpnonceF
}
func TestDetTokenCryptoHandshake(t *testing.T) {
defer testlog(t).detach()
tmpkeyF := keyF
keyF = detkeyF
tmpnonceF := nonceF
nonceF = detnonceF
testCryptoHandshakeWithGen(true, t)
keyF = tmpkeyF
nonceF = tmpnonceF
}
func testCryptoHandshakeWithGen(token bool, t *testing.T) {
fmt.Printf("init-private-key: ")
prv0, err := keyF()
if err != nil {
t.Errorf("%v", err)
return
}
fmt.Printf("rec-private-key: ")
prv1, err := keyF()
if err != nil {
t.Errorf("%v", err)
return
}
var nonce []byte
if token {
fmt.Printf("session-token: ")
nonce = make([]byte, shaLen)
nonceF(nonce)
}
testCryptoHandshake(prv0, prv1, nonce, t)
}
func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *testing.T) {
var err error
pub0 := &prv0.PublicKey
pub1 := &prv1.PublicKey
pub0s := crypto.FromECDSAPub(pub0)
pub1s := crypto.FromECDSAPub(pub1)
// simulate handshake by feeding output to input
// initiator sends handshake 'auth'
auth, initNonce, randomPrivKey, _, err := startHandshake(prv0, pub1s, sessionToken)
if err != nil {
t.Errorf("%v", err)
}
fmt.Printf("-> %v\n", hexkey(auth))
// receiver reads auth and responds with response
response, remoteRecNonce, remoteInitNonce, remoteRandomPrivKey, remoteInitRandomPubKey, err := respondToHandshake(auth, prv1, pub0s, sessionToken)
if err != nil {
t.Errorf("%v", err)
}
fmt.Printf("<- %v\n", hexkey(response))
// initiator reads receiver's response and the key exchange completes
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0)
if err != nil {
t.Errorf("%v", err)
}
// now both parties should have the same session parameters
initSessionToken, initSecretRW, err := newSession(true, initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey)
if err != nil {
t.Errorf("%v", err)
}
recSessionToken, recSecretRW, err := newSession(false, remoteInitNonce, remoteRecNonce, auth, remoteRandomPrivKey, remoteInitRandomPubKey)
if err != nil {
t.Errorf("%v", err)
}
// fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
// fmt.Printf("\nauth %x\ninitNonce %x\nresponse%x\nremoteRecNonce %x\nremoteInitNonce %x\nremoteRandomPubKey %x\nrecNonce %x\nremoteInitRandomPubKey %x\ninitSessionToken %x\n\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, remoteInitRandomPubKey, initSessionToken)
if !bytes.Equal(initNonce, remoteInitNonce) {
t.Errorf("nonces do not match")
}
if !bytes.Equal(recNonce, remoteRecNonce) {
t.Errorf("receiver nonces do not match")
}
if !bytes.Equal(initSessionToken, recSessionToken) {
t.Errorf("session tokens do not match")
}
// aesSecret, macSecret, egressMac, ingressMac
if !bytes.Equal(initSecretRW.aesSecret, recSecretRW.aesSecret) {
t.Errorf("AES secrets do not match")
}
if !bytes.Equal(initSecretRW.macSecret, recSecretRW.macSecret) {
t.Errorf("macSecrets do not match")
}
if !bytes.Equal(initSecretRW.egressMac, recSecretRW.ingressMac) {
t.Errorf("initiator's egressMac do not match receiver's ingressMac")
}
if !bytes.Equal(initSecretRW.ingressMac, recSecretRW.egressMac) {
t.Errorf("initiator's inressMac do not match receiver's egressMac")
}
}
func TestPeersHandshake(t *testing.T) {
defer testlog(t).detach()
var err error
// var sessionToken []byte
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
prv0s := crypto.FromECDSA(prv0)
pub0s := crypto.FromECDSAPub(pub0)
prv1s := crypto.FromECDSA(prv1)
pub1s := crypto.FromECDSAPub(pub1)
conn1, conn2 := net.Pipe()
initiator := newPeer(conn1, []Protocol{}, nil)
receiver := newPeer(conn2, []Protocol{}, nil)
initiator.dialAddr = &peerAddr{IP: net.ParseIP("1.2.3.4"), Port: 2222, Pubkey: pub1s[1:]}
initiator.privateKey = prv0s
// this is cheating. identity of initiator/dialler not available to listener/receiver
// its public key should be looked up based on IP address
receiver.identity = &peerId{nil, pub0s}
receiver.privateKey = prv1s
initiator.pubkeyHook = func(*peerAddr) error { return nil }
receiver.pubkeyHook = func(*peerAddr) error { return nil }
initiator.cryptoHandshake = true
receiver.cryptoHandshake = true
errc0 := make(chan error, 1)
errc1 := make(chan error, 1)
go func() {
_, err := initiator.loop()
errc0 <- err
}()
go func() {
_, err := receiver.loop()
errc1 <- err
}()
ready := make(chan bool)
go func() {
<-initiator.cryptoReady
<-receiver.cryptoReady
close(ready)
}()
timeout := time.After(10 * time.Second)
select {
case <-ready:
case <-timeout:
t.Errorf("crypto handshake hanging for too long")
case err = <-errc0:
t.Errorf("peer 0 quit with error: %v", err)
case err = <-errc1:
t.Errorf("peer 1 quit with error: %v", err)
}
}
|