1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pow
import (
"bufio"
"bytes"
"errors"
"fmt"
"io/ioutil"
"math/big"
"os"
"path/filepath"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/log"
metrics "github.com/rcrowley/go-metrics"
)
var (
ErrInvalidDifficulty = errors.New("non-positive difficulty")
ErrInvalidMixDigest = errors.New("invalid mix digest")
ErrInvalidPoW = errors.New("pow difficulty invalid")
)
var (
// maxUint256 is a big integer representing 2^256-1
maxUint256 = new(big.Int).Exp(big.NewInt(2), big.NewInt(256), big.NewInt(0))
// sharedEthash is a full instance that can be shared between multiple users.
sharedEthash = NewFullEthash("", 3, 0, "", 0)
// algorithmRevision is the data structure version used for file naming.
algorithmRevision = 23
// dumpMagic is a dataset dump header to sanity check a data dump.
dumpMagic = hexutil.MustDecode("0xfee1deadbaddcafe")
)
// cache wraps an ethash cache with some metadata to allow easier concurrent use.
type cache struct {
epoch uint64 // Epoch for which this cache is relevant
cache []uint32 // The actual cache data content
used time.Time // Timestamp of the last use for smarter eviction
once sync.Once // Ensures the cache is generated only once
lock sync.Mutex // Ensures thread safety for updating the usage time
}
// generate ensures that the cache content is generates.
func (c *cache) generate(dir string, limit int, test bool) {
c.once.Do(func() {
// If we have a testing cache, generate and return
if test {
rawCache := generateCache(1024, seedHash(c.epoch*epochLength+1))
c.cache = prepare(uint64(len(rawCache)), bytes.NewReader(rawCache))
return
}
// Full cache generation is needed, check cache dir for existing data
size := cacheSize(c.epoch*epochLength + 1)
seed := seedHash(c.epoch*epochLength + 1)
path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x", algorithmRevision, seed))
logger := log.New("seed", hexutil.Bytes(seed))
if dir != "" {
dump, err := os.Open(path)
if err == nil {
logger.Info("Loading ethash cache from disk")
start := time.Now()
c.cache = prepare(size, bufio.NewReader(dump))
logger.Info("Loaded ethash cache from disk", "elapsed", common.PrettyDuration(time.Since(start)))
dump.Close()
return
}
}
// No previous disk cache was available, generate on the fly
rawCache := generateCache(size, seed)
c.cache = prepare(size, bytes.NewReader(rawCache))
// If a cache directory is given, attempt to serialize for next time
if dir != "" {
// Store the ethash cache to disk
start := time.Now()
if err := os.MkdirAll(filepath.Dir(path), os.ModePerm); err != nil {
logger.Error("Failed to create ethash cache dir", "err", err)
} else if err := ioutil.WriteFile(path, rawCache, os.ModePerm); err != nil {
logger.Error("Failed to write ethash cache to disk", "err", err)
} else {
logger.Info("Stored ethash cache to disk", "elapsed", common.PrettyDuration(time.Since(start)))
}
// Iterate over all previous instances and delete old ones
for ep := int(c.epoch) - limit; ep >= 0; ep-- {
seed := seedHash(uint64(ep)*epochLength + 1)
path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x", algorithmRevision, seed))
os.Remove(path)
}
}
})
}
// Ethash is a PoW data struture implementing the ethash algorithm.
type Ethash struct {
cachedir string // Data directory to store the verification caches
cachesinmem int // Number of caches to keep in memory
cachesondisk int // Number of caches to keep on disk
dagdir string // Data directory to store full mining datasets
dagsondisk int // Number of mining datasets to keep on disk
caches map[uint64]*cache // In memory caches to avoid regenerating too often
future *cache // Pre-generated cache for the estimated future epoch
lock sync.Mutex // Ensures thread safety for the in-memory caches
hashrate *metrics.StandardMeter // Meter tracking the average hashrate
tester bool // Flag whether to use a smaller test dataset
}
// NewFullEthash creates a full sized ethash PoW scheme.
func NewFullEthash(cachedir string, cachesinmem, cachesondisk int, dagdir string, dagsondisk int) PoW {
if cachesinmem <= 0 {
log.Warn("One ethash cache must alwast be in memory", "requested", cachesinmem)
cachesinmem = 1
}
if cachedir != "" && cachesondisk > 0 {
log.Info("Disk storage enabled for ethash caches", "dir", cachedir, "count", cachesondisk)
}
if dagdir != "" && dagsondisk > 0 {
log.Info("Disk storage enabled for ethash DAGs", "dir", dagdir, "count", dagsondisk)
}
return &Ethash{
cachedir: cachedir,
cachesinmem: cachesinmem,
cachesondisk: cachesondisk,
dagdir: dagdir,
dagsondisk: dagsondisk,
caches: make(map[uint64]*cache),
}
}
// NewTestEthash creates a small sized ethash PoW scheme useful only for testing
// purposes.
func NewTestEthash() PoW {
return &Ethash{
cachesinmem: 1,
caches: make(map[uint64]*cache),
tester: true,
}
}
// NewSharedEthash creates a full sized ethash PoW shared between all requesters
// running in the same process.
func NewSharedEthash() PoW {
return sharedEthash
}
// Verify implements PoW, checking whether the given block satisfies the PoW
// difficulty requirements.
func (ethash *Ethash) Verify(block Block) error {
// Ensure twe have a valid difficulty for the block
difficulty := block.Difficulty()
if difficulty.Sign() <= 0 {
return ErrInvalidDifficulty
}
// Recompute the digest and PoW value and verify against the block
number := block.NumberU64()
cache := ethash.cache(number)
size := datasetSize(number)
if ethash.tester {
size = 32 * 1024
}
digest, result := hashimotoLight(size, cache, block.HashNoNonce().Bytes(), block.Nonce())
if !bytes.Equal(block.MixDigest().Bytes(), digest) {
return ErrInvalidMixDigest
}
target := new(big.Int).Div(maxUint256, difficulty)
if new(big.Int).SetBytes(result).Cmp(target) > 0 {
return ErrInvalidPoW
}
return nil
}
// cache tries to retrieve a verification cache for the specified block number
// by first checking against a list of in-memory caches, then against caches
// stored on disk, and finally generating one if none can be found.
func (ethash *Ethash) cache(block uint64) []uint32 {
epoch := block / epochLength
// If we have a PoW for that epoch, use that
ethash.lock.Lock()
current, future := ethash.caches[epoch], (*cache)(nil)
if current == nil {
// No in-memory cache, evict the oldest if the cache limit was reached
for len(ethash.caches) >= ethash.cachesinmem {
var evict *cache
for _, cache := range ethash.caches {
if evict == nil || evict.used.After(cache.used) {
evict = cache
}
}
delete(ethash.caches, evict.epoch)
log.Debug("Evicted ethash cache", "epoch", evict.epoch, "used", evict.used)
}
// If we have the new cache pre-generated, use that, otherwise create a new one
if ethash.future != nil && ethash.future.epoch == epoch {
log.Debug("Using pre-generated cache", "epoch", epoch)
current, ethash.future = ethash.future, nil
} else {
log.Debug("Requiring new ethash cache", "epoch", epoch)
current = &cache{epoch: epoch}
}
ethash.caches[epoch] = current
// If we just used up the future cache, or need a refresh, regenerate
if ethash.future == nil || ethash.future.epoch <= epoch {
log.Debug("Requiring new future ethash cache", "epoch", epoch+1)
future = &cache{epoch: epoch + 1}
ethash.future = future
}
}
current.used = time.Now()
ethash.lock.Unlock()
// Wait for generation finish, bump the timestamp and finalize the cache
current.generate(ethash.cachedir, ethash.cachesondisk, ethash.tester)
current.lock.Lock()
current.used = time.Now()
current.lock.Unlock()
// If we exhusted the future cache, now's a goot time to regenerate it
if future != nil {
go future.generate(ethash.cachedir, ethash.cachesondisk, ethash.tester)
}
return current.cache
}
// Search implements PoW, attempting to find a nonce that satisfies the block's
// difficulty requirements.
func (ethash *Ethash) Search(block Block, stop <-chan struct{}) (uint64, []byte) {
return 0, nil
}
// Hashrate implements PoW, returning the measured rate of the search invocations
// per second over the last minute.
func (ethash *Ethash) Hashrate() float64 {
return ethash.hashrate.Rate1()
}
// EthashSeedHash is the seed to use for generating a vrification cache and the
// mining dataset.
func EthashSeedHash(block uint64) []byte {
return seedHash(block)
}
|