1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
package main
import (
"math"
"math/big"
"fmt"
"strconv"
_ "encoding/hex"
)
// Op codes
const (
oSTOP int = 0x00
oADD int = 0x10
oSUB int = 0x11
oMUL int = 0x12
oDIV int = 0x13
oSDIV int = 0x14
oMOD int = 0x15
oSMOD int = 0x16
oEXP int = 0x17
oNEG int = 0x18
oLT int = 0x20
oLE int = 0x21
oGT int = 0x22
oGE int = 0x23
oEQ int = 0x24
oNOT int = 0x25
oSHA256 int = 0x30
oRIPEMD160 int = 0x31
oECMUL int = 0x32
oECADD int = 0x33
oSIGN int = 0x34
oRECOVER int = 0x35
oCOPY int = 0x40
oST int = 0x41
oLD int = 0x42
oSET int = 0x43
oJMP int = 0x50
oJMPI int = 0x51
oIND int = 0x52
oEXTRO int = 0x60
oBALANCE int = 0x61
oMKTX int = 0x70
oDATA int = 0x80
oDATAN int = 0x81
oMYADDRESS int = 0x90
oSUICIDE int = 0xff
)
type OpType int
const (
tNorm = iota
tData
tExtro
tCrypto
)
type TxCallback func(opType OpType) bool
type Vm struct {
// Memory stack
stack map[string]string
memory map[string]map[string]string
}
func NewVm() *Vm {
//stackSize := uint(256)
return &Vm{
stack: make(map[string]string),
memory: make(map[string]map[string]string),
}
}
func (vm *Vm) RunTransaction(tx *Transaction, cb TxCallback) {
if Debug {
fmt.Printf(`
# processing Tx (%v)
# fee = %f, ops = %d, sender = %s, value = %d
`, tx.addr, float32(tx.fee) / 1e8, len(tx.data), tx.sender, tx.value)
}
vm.stack = make(map[string]string)
vm.stack["0"] = tx.sender
vm.stack["1"] = "100" //int(tx.value)
vm.stack["1"] = "1000" //int(tx.fee)
// Stack pointer
stPtr := 0
//vm.memory[tx.addr] = make([]int, 256)
vm.memory[tx.addr] = make(map[string]string)
// Define instruction 'accessors' for the instruction, which makes it more readable
// also called register values, shorthanded as Rx/y/z. Memory address are shorthanded as Mx/y/z.
// Instructions are shorthanded as Ix/y/z
x := 0; y := 1; z := 2; //a := 3; b := 4; c := 5
out:
for stPtr < len(tx.data) {
// The base big int for all calculations. Use this for any results.
base := new(big.Int)
// XXX Should Instr return big int slice instead of string slice?
op, args, _ := Instr(tx.data[stPtr])
if Debug {
fmt.Printf("%-3d %d %v\n", stPtr, op, args)
}
opType := OpType(tNorm)
// Determine the op type (used for calculating fees by the block manager)
switch op {
case oEXTRO, oBALANCE:
opType = tExtro
case oSHA256, oRIPEMD160, oECMUL, oECADD: // TODO add rest
opType = tCrypto
}
// If the callback yielded a negative result abort execution
if !cb(opType) { break out }
nptr := stPtr
switch op {
case oSTOP:
fmt.Println("exiting (oSTOP), idx =", nptr)
break out
case oADD:
// (Rx + Ry) % 2 ** 256
base.Add(Big(vm.stack[args[ x ]]), Big(vm.stack[args[ y ]]))
base.Mod(base, big.NewInt(int64(math.Pow(2, 256))))
// Set the result to Rz
vm.stack[args[ z ]] = base.String()
case oSUB:
// (Rx - Ry) % 2 ** 256
base.Sub(Big(vm.stack[args[ x ]]), Big(vm.stack[args[ y ]]))
base.Mod(base, big.NewInt(int64(math.Pow(2, 256))))
// Set the result to Rz
vm.stack[args[ z ]] = base.String()
case oMUL:
// (Rx * Ry) % 2 ** 256
base.Mul(Big(vm.stack[args[ x ]]), Big(vm.stack[args[ y ]]))
base.Mod(base, big.NewInt(int64(math.Pow(2, 256))))
// Set the result to Rz
vm.stack[args[ z ]] = base.String()
case oDIV:
// floor(Rx / Ry)
base.Div(Big(vm.stack[args[ x ]]), Big(vm.stack[args[ y ]]))
// Set the result to Rz
vm.stack[args[ z ]] = base.String()
case oSET:
// Set the (numeric) value at Iy to Rx
vm.stack[args[ x ]] = args[ y ]
case oLD:
// Load the value at Mx to Ry
vm.stack[args[ y ]] = vm.memory[tx.addr][vm.stack[args[ x ]]]
case oLT:
cmp := Big(vm.stack[args[ x ]]).Cmp( Big(vm.stack[args[ y ]]) )
// Set the result as "boolean" value to Rz
if cmp < 0 { // a < b
vm.stack[args[ z ]] = "1"
} else {
vm.stack[args[ z ]] = "0"
}
case oJMP:
// Set the instruction pointer to the value at Rx
ptr, _ := strconv.Atoi( vm.stack[args[ x ]] )
nptr = ptr
case oJMPI:
// Set the instruction pointer to the value at Ry if Rx yields true
if vm.stack[args[ x ]] != "0" {
ptr, _ := strconv.Atoi( vm.stack[args[ y ]] )
nptr = ptr
}
default:
fmt.Println("Error op", op)
break
}
if stPtr == nptr {
stPtr++
} else {
stPtr = nptr
if Debug { fmt.Println("... JMP", nptr, "...") }
}
}
}
|