aboutsummaryrefslogtreecommitdiffstats
path: root/whisper/whisperv6/envelope.go
blob: a5f4770b076084a1a12042e9b6295345e64b6ddf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Contains the Whisper protocol Envelope element.

package whisperv6

import (
    "crypto/ecdsa"
    "encoding/binary"
    "fmt"
    gmath "math"
    "math/big"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/common/math"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/crypto/ecies"
    "github.com/ethereum/go-ethereum/rlp"
)

// Envelope represents a clear-text data packet to transmit through the Whisper
// network. Its contents may or may not be encrypted and signed.
type Envelope struct {
    Version  []byte
    Expiry   uint32
    TTL      uint32
    Topic    TopicType
    AESNonce []byte
    Data     []byte
    EnvNonce uint64

    pow  float64     // Message-specific PoW as described in the Whisper specification.
    hash common.Hash // Cached hash of the envelope to avoid rehashing every time.
    // Don't access hash directly, use Hash() function instead.
}

// size returns the size of envelope as it is sent (i.e. public fields only)
func (e *Envelope) size() int {
    return 20 + len(e.Version) + len(e.AESNonce) + len(e.Data)
}

// rlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
func (e *Envelope) rlpWithoutNonce() []byte {
    res, _ := rlp.EncodeToBytes([]interface{}{e.Version, e.Expiry, e.TTL, e.Topic, e.AESNonce, e.Data})
    return res
}

// NewEnvelope wraps a Whisper message with expiration and destination data
// included into an envelope for network forwarding.
func NewEnvelope(ttl uint32, topic TopicType, aesNonce []byte, msg *sentMessage) *Envelope {
    env := Envelope{
        Version:  make([]byte, 1),
        Expiry:   uint32(time.Now().Add(time.Second * time.Duration(ttl)).Unix()),
        TTL:      ttl,
        Topic:    topic,
        AESNonce: aesNonce,
        Data:     msg.Raw,
        EnvNonce: 0,
    }

    if EnvelopeVersion < 256 {
        env.Version[0] = byte(EnvelopeVersion)
    } else {
        panic("please increase the size of Envelope.Version before releasing this version")
    }

    return &env
}

func (e *Envelope) IsSymmetric() bool {
    return len(e.AESNonce) > 0
}

func (e *Envelope) isAsymmetric() bool {
    return !e.IsSymmetric()
}

func (e *Envelope) Ver() uint64 {
    return bytesToUintLittleEndian(e.Version)
}

// Seal closes the envelope by spending the requested amount of time as a proof
// of work on hashing the data.
func (e *Envelope) Seal(options *MessageParams) error {
    var target, bestBit int
    if options.PoW == 0 {
        // adjust for the duration of Seal() execution only if execution time is predefined unconditionally
        e.Expiry += options.WorkTime
    } else {
        target = e.powToFirstBit(options.PoW)
        if target < 1 {
            target = 1
        }
    }

    buf := make([]byte, 64)
    h := crypto.Keccak256(e.rlpWithoutNonce())
    copy(buf[:32], h)

    finish := time.Now().Add(time.Duration(options.WorkTime) * time.Second).UnixNano()
    for nonce := uint64(0); time.Now().UnixNano() < finish; {
        for i := 0; i < 1024; i++ {
            binary.BigEndian.PutUint64(buf[56:], nonce)
            d := new(big.Int).SetBytes(crypto.Keccak256(buf))
            firstBit := math.FirstBitSet(d)
            if firstBit > bestBit {
                e.EnvNonce, bestBit = nonce, firstBit
                if target > 0 && bestBit >= target {
                    return nil
                }
            }
            nonce++
        }
    }

    if target > 0 && bestBit < target {
        return fmt.Errorf("failed to reach the PoW target, specified pow time (%d seconds) was insufficient", options.WorkTime)
    }

    return nil
}

func (e *Envelope) PoW() float64 {
    if e.pow == 0 {
        e.calculatePoW(0)
    }
    return e.pow
}

func (e *Envelope) calculatePoW(diff uint32) {
    buf := make([]byte, 64)
    h := crypto.Keccak256(e.rlpWithoutNonce())
    copy(buf[:32], h)
    binary.BigEndian.PutUint64(buf[56:], e.EnvNonce)
    d := new(big.Int).SetBytes(crypto.Keccak256(buf))
    firstBit := math.FirstBitSet(d)
    x := gmath.Pow(2, float64(firstBit))
    x /= float64(e.size())
    x /= float64(e.TTL + diff)
    e.pow = x
}

func (e *Envelope) powToFirstBit(pow float64) int {
    x := pow
    x *= float64(e.size())
    x *= float64(e.TTL)
    bits := gmath.Log2(x)
    bits = gmath.Ceil(bits)
    return int(bits)
}

// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
func (e *Envelope) Hash() common.Hash {
    if (e.hash == common.Hash{}) {
        encoded, _ := rlp.EncodeToBytes(e)
        e.hash = crypto.Keccak256Hash(encoded)
    }
    return e.hash
}

// DecodeRLP decodes an Envelope from an RLP data stream.
func (e *Envelope) DecodeRLP(s *rlp.Stream) error {
    raw, err := s.Raw()
    if err != nil {
        return err
    }
    // The decoding of Envelope uses the struct fields but also needs
    // to compute the hash of the whole RLP-encoded envelope. This
    // type has the same structure as Envelope but is not an
    // rlp.Decoder (does not implement DecodeRLP function).
    // Only public members will be encoded.
    type rlpenv Envelope
    if err := rlp.DecodeBytes(raw, (*rlpenv)(e)); err != nil {
        return err
    }
    e.hash = crypto.Keccak256Hash(raw)
    return nil
}

// OpenAsymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
func (e *Envelope) OpenAsymmetric(key *ecdsa.PrivateKey) (*ReceivedMessage, error) {
    message := &ReceivedMessage{Raw: e.Data}
    err := message.decryptAsymmetric(key)
    switch err {
    case nil:
        return message, nil
    case ecies.ErrInvalidPublicKey: // addressed to somebody else
        return nil, err
    default:
        return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
    }
}

// OpenSymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
func (e *Envelope) OpenSymmetric(key []byte) (msg *ReceivedMessage, err error) {
    msg = &ReceivedMessage{Raw: e.Data}
    err = msg.decryptSymmetric(key, e.AESNonce)
    if err != nil {
        msg = nil
    }
    return msg, err
}

// Open tries to decrypt an envelope, and populates the message fields in case of success.
func (e *Envelope) Open(watcher *Filter) (msg *ReceivedMessage) {
    if e.isAsymmetric() {
        msg, _ = e.OpenAsymmetric(watcher.KeyAsym)
        if msg != nil {
            msg.Dst = &watcher.KeyAsym.PublicKey
        }
    } else if e.IsSymmetric() {
        msg, _ = e.OpenSymmetric(watcher.KeySym)
        if msg != nil {
            msg.SymKeyHash = crypto.Keccak256Hash(watcher.KeySym)
        }
    }

    if msg != nil {
        ok := msg.Validate()
        if !ok {
            return nil
        }
        msg.Topic = e.Topic
        msg.PoW = e.PoW()
        msg.TTL = e.TTL
        msg.Sent = e.Expiry - e.TTL
        msg.EnvelopeHash = e.Hash()
        msg.EnvelopeVersion = e.Ver()
    }
    return msg
}