diff options
author | Jeffrey Wilcke <jeffrey@ethereum.org> | 2015-06-03 19:13:31 +0800 |
---|---|---|
committer | Jeffrey Wilcke <jeffrey@ethereum.org> | 2015-06-03 19:13:31 +0800 |
commit | 827bccb64b97dd19918160af99951e8917c2d3f7 (patch) | |
tree | 26b291c5e9f70279eac27ae7624135b3b4ee643b | |
parent | 9085b10508f1a3a5830549037f033ca58d184a0e (diff) | |
parent | 14e7192d9c2de76c1eff151cc25eec73babfb61a (diff) | |
download | go-tangerine-827bccb64b97dd19918160af99951e8917c2d3f7.tar.gz go-tangerine-827bccb64b97dd19918160af99951e8917c2d3f7.tar.zst go-tangerine-827bccb64b97dd19918160af99951e8917c2d3f7.zip |
Merge pull request #1175 from karalabe/keccak-update
crypto/sha3: pull in latest keccak from go crypto (45% speed increase)
-rw-r--r-- | crypto/sha3/keccakf.go | 563 | ||||
-rw-r--r-- | crypto/sha3/sha3.go | 19 |
2 files changed, 409 insertions, 173 deletions
diff --git a/crypto/sha3/keccakf.go b/crypto/sha3/keccakf.go index 3baf13ba3..13e7058fa 100644 --- a/crypto/sha3/keccakf.go +++ b/crypto/sha3/keccakf.go @@ -1,171 +1,410 @@ -// Copyright 2013 The Go Authors. All rights reserved. +// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sha3 -// This file implements the core Keccak permutation function necessary for computing SHA3. -// This is implemented in a separate file to allow for replacement by an optimized implementation. -// Nothing in this package is exported. -// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). - // rc stores the round constants for use in the ι step. -var rc = [...]uint64{ - 0x0000000000000001, - 0x0000000000008082, - 0x800000000000808A, - 0x8000000080008000, - 0x000000000000808B, - 0x0000000080000001, - 0x8000000080008081, - 0x8000000000008009, - 0x000000000000008A, - 0x0000000000000088, - 0x0000000080008009, - 0x000000008000000A, - 0x000000008000808B, - 0x800000000000008B, - 0x8000000000008089, - 0x8000000000008003, - 0x8000000000008002, - 0x8000000000000080, - 0x000000000000800A, - 0x800000008000000A, - 0x8000000080008081, - 0x8000000000008080, - 0x0000000080000001, - 0x8000000080008008, +var rc = [24]uint64{ + 0x0000000000000001, + 0x0000000000008082, + 0x800000000000808A, + 0x8000000080008000, + 0x000000000000808B, + 0x0000000080000001, + 0x8000000080008081, + 0x8000000000008009, + 0x000000000000008A, + 0x0000000000000088, + 0x0000000080008009, + 0x000000008000000A, + 0x000000008000808B, + 0x800000000000008B, + 0x8000000000008089, + 0x8000000000008003, + 0x8000000000008002, + 0x8000000000000080, + 0x000000000000800A, + 0x800000008000000A, + 0x8000000080008081, + 0x8000000000008080, + 0x0000000080000001, + 0x8000000080008008, } -// ro_xx represent the rotation offsets for use in the χ step. -// Defining them as const instead of in an array allows the compiler to insert constant shifts. -const ( - ro_00 = 0 - ro_01 = 36 - ro_02 = 3 - ro_03 = 41 - ro_04 = 18 - ro_05 = 1 - ro_06 = 44 - ro_07 = 10 - ro_08 = 45 - ro_09 = 2 - ro_10 = 62 - ro_11 = 6 - ro_12 = 43 - ro_13 = 15 - ro_14 = 61 - ro_15 = 28 - ro_16 = 55 - ro_17 = 25 - ro_18 = 21 - ro_19 = 56 - ro_20 = 27 - ro_21 = 20 - ro_22 = 39 - ro_23 = 8 - ro_24 = 14 -) - -// keccakF computes the complete Keccak-f function consisting of 24 rounds with a different -// constant (rc) in each round. This implementation fully unrolls the round function to avoid -// inner loops, as well as pre-calculating shift offsets. -func (d *digest) keccakF() { - for _, roundConstant := range rc { - // θ step - d.c[0] = d.a[0] ^ d.a[5] ^ d.a[10] ^ d.a[15] ^ d.a[20] - d.c[1] = d.a[1] ^ d.a[6] ^ d.a[11] ^ d.a[16] ^ d.a[21] - d.c[2] = d.a[2] ^ d.a[7] ^ d.a[12] ^ d.a[17] ^ d.a[22] - d.c[3] = d.a[3] ^ d.a[8] ^ d.a[13] ^ d.a[18] ^ d.a[23] - d.c[4] = d.a[4] ^ d.a[9] ^ d.a[14] ^ d.a[19] ^ d.a[24] - - d.d[0] = d.c[4] ^ (d.c[1]<<1 ^ d.c[1]>>63) - d.d[1] = d.c[0] ^ (d.c[2]<<1 ^ d.c[2]>>63) - d.d[2] = d.c[1] ^ (d.c[3]<<1 ^ d.c[3]>>63) - d.d[3] = d.c[2] ^ (d.c[4]<<1 ^ d.c[4]>>63) - d.d[4] = d.c[3] ^ (d.c[0]<<1 ^ d.c[0]>>63) - - d.a[0] ^= d.d[0] - d.a[1] ^= d.d[1] - d.a[2] ^= d.d[2] - d.a[3] ^= d.d[3] - d.a[4] ^= d.d[4] - d.a[5] ^= d.d[0] - d.a[6] ^= d.d[1] - d.a[7] ^= d.d[2] - d.a[8] ^= d.d[3] - d.a[9] ^= d.d[4] - d.a[10] ^= d.d[0] - d.a[11] ^= d.d[1] - d.a[12] ^= d.d[2] - d.a[13] ^= d.d[3] - d.a[14] ^= d.d[4] - d.a[15] ^= d.d[0] - d.a[16] ^= d.d[1] - d.a[17] ^= d.d[2] - d.a[18] ^= d.d[3] - d.a[19] ^= d.d[4] - d.a[20] ^= d.d[0] - d.a[21] ^= d.d[1] - d.a[22] ^= d.d[2] - d.a[23] ^= d.d[3] - d.a[24] ^= d.d[4] - - // ρ and π steps - d.b[0] = d.a[0] - d.b[1] = d.a[6]<<ro_06 ^ d.a[6]>>(64-ro_06) - d.b[2] = d.a[12]<<ro_12 ^ d.a[12]>>(64-ro_12) - d.b[3] = d.a[18]<<ro_18 ^ d.a[18]>>(64-ro_18) - d.b[4] = d.a[24]<<ro_24 ^ d.a[24]>>(64-ro_24) - d.b[5] = d.a[3]<<ro_15 ^ d.a[3]>>(64-ro_15) - d.b[6] = d.a[9]<<ro_21 ^ d.a[9]>>(64-ro_21) - d.b[7] = d.a[10]<<ro_02 ^ d.a[10]>>(64-ro_02) - d.b[8] = d.a[16]<<ro_08 ^ d.a[16]>>(64-ro_08) - d.b[9] = d.a[22]<<ro_14 ^ d.a[22]>>(64-ro_14) - d.b[10] = d.a[1]<<ro_05 ^ d.a[1]>>(64-ro_05) - d.b[11] = d.a[7]<<ro_11 ^ d.a[7]>>(64-ro_11) - d.b[12] = d.a[13]<<ro_17 ^ d.a[13]>>(64-ro_17) - d.b[13] = d.a[19]<<ro_23 ^ d.a[19]>>(64-ro_23) - d.b[14] = d.a[20]<<ro_04 ^ d.a[20]>>(64-ro_04) - d.b[15] = d.a[4]<<ro_20 ^ d.a[4]>>(64-ro_20) - d.b[16] = d.a[5]<<ro_01 ^ d.a[5]>>(64-ro_01) - d.b[17] = d.a[11]<<ro_07 ^ d.a[11]>>(64-ro_07) - d.b[18] = d.a[17]<<ro_13 ^ d.a[17]>>(64-ro_13) - d.b[19] = d.a[23]<<ro_19 ^ d.a[23]>>(64-ro_19) - d.b[20] = d.a[2]<<ro_10 ^ d.a[2]>>(64-ro_10) - d.b[21] = d.a[8]<<ro_16 ^ d.a[8]>>(64-ro_16) - d.b[22] = d.a[14]<<ro_22 ^ d.a[14]>>(64-ro_22) - d.b[23] = d.a[15]<<ro_03 ^ d.a[15]>>(64-ro_03) - d.b[24] = d.a[21]<<ro_09 ^ d.a[21]>>(64-ro_09) - - // χ step - d.a[0] = d.b[0] ^ (^d.b[1] & d.b[2]) - d.a[1] = d.b[1] ^ (^d.b[2] & d.b[3]) - d.a[2] = d.b[2] ^ (^d.b[3] & d.b[4]) - d.a[3] = d.b[3] ^ (^d.b[4] & d.b[0]) - d.a[4] = d.b[4] ^ (^d.b[0] & d.b[1]) - d.a[5] = d.b[5] ^ (^d.b[6] & d.b[7]) - d.a[6] = d.b[6] ^ (^d.b[7] & d.b[8]) - d.a[7] = d.b[7] ^ (^d.b[8] & d.b[9]) - d.a[8] = d.b[8] ^ (^d.b[9] & d.b[5]) - d.a[9] = d.b[9] ^ (^d.b[5] & d.b[6]) - d.a[10] = d.b[10] ^ (^d.b[11] & d.b[12]) - d.a[11] = d.b[11] ^ (^d.b[12] & d.b[13]) - d.a[12] = d.b[12] ^ (^d.b[13] & d.b[14]) - d.a[13] = d.b[13] ^ (^d.b[14] & d.b[10]) - d.a[14] = d.b[14] ^ (^d.b[10] & d.b[11]) - d.a[15] = d.b[15] ^ (^d.b[16] & d.b[17]) - d.a[16] = d.b[16] ^ (^d.b[17] & d.b[18]) - d.a[17] = d.b[17] ^ (^d.b[18] & d.b[19]) - d.a[18] = d.b[18] ^ (^d.b[19] & d.b[15]) - d.a[19] = d.b[19] ^ (^d.b[15] & d.b[16]) - d.a[20] = d.b[20] ^ (^d.b[21] & d.b[22]) - d.a[21] = d.b[21] ^ (^d.b[22] & d.b[23]) - d.a[22] = d.b[22] ^ (^d.b[23] & d.b[24]) - d.a[23] = d.b[23] ^ (^d.b[24] & d.b[20]) - d.a[24] = d.b[24] ^ (^d.b[20] & d.b[21]) - - // ι step - d.a[0] ^= roundConstant - } +// keccakF1600 applies the Keccak permutation to a 1600b-wide +// state represented as a slice of 25 uint64s. +func keccakF1600(a *[25]uint64) { + // Implementation translated from Keccak-inplace.c + // in the keccak reference code. + var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64 + + for i := 0; i < 24; i += 4 { + // Combines the 5 steps in each round into 2 steps. + // Unrolls 4 rounds per loop and spreads some steps across rounds. + + // Round 1 + bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] + bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] + bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] + bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] + bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] + d0 = bc4 ^ (bc1<<1 | bc1>>63) + d1 = bc0 ^ (bc2<<1 | bc2>>63) + d2 = bc1 ^ (bc3<<1 | bc3>>63) + d3 = bc2 ^ (bc4<<1 | bc4>>63) + d4 = bc3 ^ (bc0<<1 | bc0>>63) + + bc0 = a[0] ^ d0 + t = a[6] ^ d1 + bc1 = t<<44 | t>>(64-44) + t = a[12] ^ d2 + bc2 = t<<43 | t>>(64-43) + t = a[18] ^ d3 + bc3 = t<<21 | t>>(64-21) + t = a[24] ^ d4 + bc4 = t<<14 | t>>(64-14) + a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i] + a[6] = bc1 ^ (bc3 &^ bc2) + a[12] = bc2 ^ (bc4 &^ bc3) + a[18] = bc3 ^ (bc0 &^ bc4) + a[24] = bc4 ^ (bc1 &^ bc0) + + t = a[10] ^ d0 + bc2 = t<<3 | t>>(64-3) + t = a[16] ^ d1 + bc3 = t<<45 | t>>(64-45) + t = a[22] ^ d2 + bc4 = t<<61 | t>>(64-61) + t = a[3] ^ d3 + bc0 = t<<28 | t>>(64-28) + t = a[9] ^ d4 + bc1 = t<<20 | t>>(64-20) + a[10] = bc0 ^ (bc2 &^ bc1) + a[16] = bc1 ^ (bc3 &^ bc2) + a[22] = bc2 ^ (bc4 &^ bc3) + a[3] = bc3 ^ (bc0 &^ bc4) + a[9] = bc4 ^ (bc1 &^ bc0) + + t = a[20] ^ d0 + bc4 = t<<18 | t>>(64-18) + t = a[1] ^ d1 + bc0 = t<<1 | t>>(64-1) + t = a[7] ^ d2 + bc1 = t<<6 | t>>(64-6) + t = a[13] ^ d3 + bc2 = t<<25 | t>>(64-25) + t = a[19] ^ d4 + bc3 = t<<8 | t>>(64-8) + a[20] = bc0 ^ (bc2 &^ bc1) + a[1] = bc1 ^ (bc3 &^ bc2) + a[7] = bc2 ^ (bc4 &^ bc3) + a[13] = bc3 ^ (bc0 &^ bc4) + a[19] = bc4 ^ (bc1 &^ bc0) + + t = a[5] ^ d0 + bc1 = t<<36 | t>>(64-36) + t = a[11] ^ d1 + bc2 = t<<10 | t>>(64-10) + t = a[17] ^ d2 + bc3 = t<<15 | t>>(64-15) + t = a[23] ^ d3 + bc4 = t<<56 | t>>(64-56) + t = a[4] ^ d4 + bc0 = t<<27 | t>>(64-27) + a[5] = bc0 ^ (bc2 &^ bc1) + a[11] = bc1 ^ (bc3 &^ bc2) + a[17] = bc2 ^ (bc4 &^ bc3) + a[23] = bc3 ^ (bc0 &^ bc4) + a[4] = bc4 ^ (bc1 &^ bc0) + + t = a[15] ^ d0 + bc3 = t<<41 | t>>(64-41) + t = a[21] ^ d1 + bc4 = t<<2 | t>>(64-2) + t = a[2] ^ d2 + bc0 = t<<62 | t>>(64-62) + t = a[8] ^ d3 + bc1 = t<<55 | t>>(64-55) + t = a[14] ^ d4 + bc2 = t<<39 | t>>(64-39) + a[15] = bc0 ^ (bc2 &^ bc1) + a[21] = bc1 ^ (bc3 &^ bc2) + a[2] = bc2 ^ (bc4 &^ bc3) + a[8] = bc3 ^ (bc0 &^ bc4) + a[14] = bc4 ^ (bc1 &^ bc0) + + // Round 2 + bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] + bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] + bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] + bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] + bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] + d0 = bc4 ^ (bc1<<1 | bc1>>63) + d1 = bc0 ^ (bc2<<1 | bc2>>63) + d2 = bc1 ^ (bc3<<1 | bc3>>63) + d3 = bc2 ^ (bc4<<1 | bc4>>63) + d4 = bc3 ^ (bc0<<1 | bc0>>63) + + bc0 = a[0] ^ d0 + t = a[16] ^ d1 + bc1 = t<<44 | t>>(64-44) + t = a[7] ^ d2 + bc2 = t<<43 | t>>(64-43) + t = a[23] ^ d3 + bc3 = t<<21 | t>>(64-21) + t = a[14] ^ d4 + bc4 = t<<14 | t>>(64-14) + a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1] + a[16] = bc1 ^ (bc3 &^ bc2) + a[7] = bc2 ^ (bc4 &^ bc3) + a[23] = bc3 ^ (bc0 &^ bc4) + a[14] = bc4 ^ (bc1 &^ bc0) + + t = a[20] ^ d0 + bc2 = t<<3 | t>>(64-3) + t = a[11] ^ d1 + bc3 = t<<45 | t>>(64-45) + t = a[2] ^ d2 + bc4 = t<<61 | t>>(64-61) + t = a[18] ^ d3 + bc0 = t<<28 | t>>(64-28) + t = a[9] ^ d4 + bc1 = t<<20 | t>>(64-20) + a[20] = bc0 ^ (bc2 &^ bc1) + a[11] = bc1 ^ (bc3 &^ bc2) + a[2] = bc2 ^ (bc4 &^ bc3) + a[18] = bc3 ^ (bc0 &^ bc4) + a[9] = bc4 ^ (bc1 &^ bc0) + + t = a[15] ^ d0 + bc4 = t<<18 | t>>(64-18) + t = a[6] ^ d1 + bc0 = t<<1 | t>>(64-1) + t = a[22] ^ d2 + bc1 = t<<6 | t>>(64-6) + t = a[13] ^ d3 + bc2 = t<<25 | t>>(64-25) + t = a[4] ^ d4 + bc3 = t<<8 | t>>(64-8) + a[15] = bc0 ^ (bc2 &^ bc1) + a[6] = bc1 ^ (bc3 &^ bc2) + a[22] = bc2 ^ (bc4 &^ bc3) + a[13] = bc3 ^ (bc0 &^ bc4) + a[4] = bc4 ^ (bc1 &^ bc0) + + t = a[10] ^ d0 + bc1 = t<<36 | t>>(64-36) + t = a[1] ^ d1 + bc2 = t<<10 | t>>(64-10) + t = a[17] ^ d2 + bc3 = t<<15 | t>>(64-15) + t = a[8] ^ d3 + bc4 = t<<56 | t>>(64-56) + t = a[24] ^ d4 + bc0 = t<<27 | t>>(64-27) + a[10] = bc0 ^ (bc2 &^ bc1) + a[1] = bc1 ^ (bc3 &^ bc2) + a[17] = bc2 ^ (bc4 &^ bc3) + a[8] = bc3 ^ (bc0 &^ bc4) + a[24] = bc4 ^ (bc1 &^ bc0) + + t = a[5] ^ d0 + bc3 = t<<41 | t>>(64-41) + t = a[21] ^ d1 + bc4 = t<<2 | t>>(64-2) + t = a[12] ^ d2 + bc0 = t<<62 | t>>(64-62) + t = a[3] ^ d3 + bc1 = t<<55 | t>>(64-55) + t = a[19] ^ d4 + bc2 = t<<39 | t>>(64-39) + a[5] = bc0 ^ (bc2 &^ bc1) + a[21] = bc1 ^ (bc3 &^ bc2) + a[12] = bc2 ^ (bc4 &^ bc3) + a[3] = bc3 ^ (bc0 &^ bc4) + a[19] = bc4 ^ (bc1 &^ bc0) + + // Round 3 + bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] + bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] + bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] + bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] + bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] + d0 = bc4 ^ (bc1<<1 | bc1>>63) + d1 = bc0 ^ (bc2<<1 | bc2>>63) + d2 = bc1 ^ (bc3<<1 | bc3>>63) + d3 = bc2 ^ (bc4<<1 | bc4>>63) + d4 = bc3 ^ (bc0<<1 | bc0>>63) + + bc0 = a[0] ^ d0 + t = a[11] ^ d1 + bc1 = t<<44 | t>>(64-44) + t = a[22] ^ d2 + bc2 = t<<43 | t>>(64-43) + t = a[8] ^ d3 + bc3 = t<<21 | t>>(64-21) + t = a[19] ^ d4 + bc4 = t<<14 | t>>(64-14) + a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2] + a[11] = bc1 ^ (bc3 &^ bc2) + a[22] = bc2 ^ (bc4 &^ bc3) + a[8] = bc3 ^ (bc0 &^ bc4) + a[19] = bc4 ^ (bc1 &^ bc0) + + t = a[15] ^ d0 + bc2 = t<<3 | t>>(64-3) + t = a[1] ^ d1 + bc3 = t<<45 | t>>(64-45) + t = a[12] ^ d2 + bc4 = t<<61 | t>>(64-61) + t = a[23] ^ d3 + bc0 = t<<28 | t>>(64-28) + t = a[9] ^ d4 + bc1 = t<<20 | t>>(64-20) + a[15] = bc0 ^ (bc2 &^ bc1) + a[1] = bc1 ^ (bc3 &^ bc2) + a[12] = bc2 ^ (bc4 &^ bc3) + a[23] = bc3 ^ (bc0 &^ bc4) + a[9] = bc4 ^ (bc1 &^ bc0) + + t = a[5] ^ d0 + bc4 = t<<18 | t>>(64-18) + t = a[16] ^ d1 + bc0 = t<<1 | t>>(64-1) + t = a[2] ^ d2 + bc1 = t<<6 | t>>(64-6) + t = a[13] ^ d3 + bc2 = t<<25 | t>>(64-25) + t = a[24] ^ d4 + bc3 = t<<8 | t>>(64-8) + a[5] = bc0 ^ (bc2 &^ bc1) + a[16] = bc1 ^ (bc3 &^ bc2) + a[2] = bc2 ^ (bc4 &^ bc3) + a[13] = bc3 ^ (bc0 &^ bc4) + a[24] = bc4 ^ (bc1 &^ bc0) + + t = a[20] ^ d0 + bc1 = t<<36 | t>>(64-36) + t = a[6] ^ d1 + bc2 = t<<10 | t>>(64-10) + t = a[17] ^ d2 + bc3 = t<<15 | t>>(64-15) + t = a[3] ^ d3 + bc4 = t<<56 | t>>(64-56) + t = a[14] ^ d4 + bc0 = t<<27 | t>>(64-27) + a[20] = bc0 ^ (bc2 &^ bc1) + a[6] = bc1 ^ (bc3 &^ bc2) + a[17] = bc2 ^ (bc4 &^ bc3) + a[3] = bc3 ^ (bc0 &^ bc4) + a[14] = bc4 ^ (bc1 &^ bc0) + + t = a[10] ^ d0 + bc3 = t<<41 | t>>(64-41) + t = a[21] ^ d1 + bc4 = t<<2 | t>>(64-2) + t = a[7] ^ d2 + bc0 = t<<62 | t>>(64-62) + t = a[18] ^ d3 + bc1 = t<<55 | t>>(64-55) + t = a[4] ^ d4 + bc2 = t<<39 | t>>(64-39) + a[10] = bc0 ^ (bc2 &^ bc1) + a[21] = bc1 ^ (bc3 &^ bc2) + a[7] = bc2 ^ (bc4 &^ bc3) + a[18] = bc3 ^ (bc0 &^ bc4) + a[4] = bc4 ^ (bc1 &^ bc0) + + // Round 4 + bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] + bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] + bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] + bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] + bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] + d0 = bc4 ^ (bc1<<1 | bc1>>63) + d1 = bc0 ^ (bc2<<1 | bc2>>63) + d2 = bc1 ^ (bc3<<1 | bc3>>63) + d3 = bc2 ^ (bc4<<1 | bc4>>63) + d4 = bc3 ^ (bc0<<1 | bc0>>63) + + bc0 = a[0] ^ d0 + t = a[1] ^ d1 + bc1 = t<<44 | t>>(64-44) + t = a[2] ^ d2 + bc2 = t<<43 | t>>(64-43) + t = a[3] ^ d3 + bc3 = t<<21 | t>>(64-21) + t = a[4] ^ d4 + bc4 = t<<14 | t>>(64-14) + a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3] + a[1] = bc1 ^ (bc3 &^ bc2) + a[2] = bc2 ^ (bc4 &^ bc3) + a[3] = bc3 ^ (bc0 &^ bc4) + a[4] = bc4 ^ (bc1 &^ bc0) + + t = a[5] ^ d0 + bc2 = t<<3 | t>>(64-3) + t = a[6] ^ d1 + bc3 = t<<45 | t>>(64-45) + t = a[7] ^ d2 + bc4 = t<<61 | t>>(64-61) + t = a[8] ^ d3 + bc0 = t<<28 | t>>(64-28) + t = a[9] ^ d4 + bc1 = t<<20 | t>>(64-20) + a[5] = bc0 ^ (bc2 &^ bc1) + a[6] = bc1 ^ (bc3 &^ bc2) + a[7] = bc2 ^ (bc4 &^ bc3) + a[8] = bc3 ^ (bc0 &^ bc4) + a[9] = bc4 ^ (bc1 &^ bc0) + + t = a[10] ^ d0 + bc4 = t<<18 | t>>(64-18) + t = a[11] ^ d1 + bc0 = t<<1 | t>>(64-1) + t = a[12] ^ d2 + bc1 = t<<6 | t>>(64-6) + t = a[13] ^ d3 + bc2 = t<<25 | t>>(64-25) + t = a[14] ^ d4 + bc3 = t<<8 | t>>(64-8) + a[10] = bc0 ^ (bc2 &^ bc1) + a[11] = bc1 ^ (bc3 &^ bc2) + a[12] = bc2 ^ (bc4 &^ bc3) + a[13] = bc3 ^ (bc0 &^ bc4) + a[14] = bc4 ^ (bc1 &^ bc0) + + t = a[15] ^ d0 + bc1 = t<<36 | t>>(64-36) + t = a[16] ^ d1 + bc2 = t<<10 | t>>(64-10) + t = a[17] ^ d2 + bc3 = t<<15 | t>>(64-15) + t = a[18] ^ d3 + bc4 = t<<56 | t>>(64-56) + t = a[19] ^ d4 + bc0 = t<<27 | t>>(64-27) + a[15] = bc0 ^ (bc2 &^ bc1) + a[16] = bc1 ^ (bc3 &^ bc2) + a[17] = bc2 ^ (bc4 &^ bc3) + a[18] = bc3 ^ (bc0 &^ bc4) + a[19] = bc4 ^ (bc1 &^ bc0) + + t = a[20] ^ d0 + bc3 = t<<41 | t>>(64-41) + t = a[21] ^ d1 + bc4 = t<<2 | t>>(64-2) + t = a[22] ^ d2 + bc0 = t<<62 | t>>(64-62) + t = a[23] ^ d3 + bc1 = t<<55 | t>>(64-55) + t = a[24] ^ d4 + bc2 = t<<39 | t>>(64-39) + a[20] = bc0 ^ (bc2 &^ bc1) + a[21] = bc1 ^ (bc3 &^ bc2) + a[22] = bc2 ^ (bc4 &^ bc3) + a[23] = bc3 ^ (bc0 &^ bc4) + a[24] = bc4 ^ (bc1 &^ bc0) + } } diff --git a/crypto/sha3/sha3.go b/crypto/sha3/sha3.go index 22df0ef11..6b058ae4d 100644 --- a/crypto/sha3/sha3.go +++ b/crypto/sha3/sha3.go @@ -38,13 +38,10 @@ const stateSize = laneSize * numLanes // O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the // capacity/outputSize ratio to allow for more output with lower cryptographic security. type digest struct { - a [numLanes]uint64 // main state of the hash - b [numLanes]uint64 // intermediate states - c [sliceSize]uint64 // intermediate states - d [sliceSize]uint64 // intermediate states - outputSize int // desired output size in bytes - capacity int // number of bytes to leave untouched during squeeze/absorb - absorbed int // number of bytes absorbed thus far + a [numLanes]uint64 // main state of the hash + outputSize int // desired output size in bytes + capacity int // number of bytes to leave untouched during squeeze/absorb + absorbed int // number of bytes absorbed thus far } // minInt returns the lesser of two integer arguments, to simplify the absorption routine. @@ -116,7 +113,7 @@ func (d *digest) Write(p []byte) (int, error) { // For every rate() bytes absorbed, the state must be permuted via the F Function. if (d.absorbed)%d.rate() == 0 { - d.keccakF() + keccakF1600(&d.a) } } @@ -134,7 +131,7 @@ func (d *digest) Write(p []byte) (int, error) { d.absorbed += (lastLane - firstLane) * laneSize // For every rate() bytes absorbed, the state must be permuted via the F Function. if (d.absorbed)%d.rate() == 0 { - d.keccakF() + keccakF1600(&d.a) } offset = 0 @@ -167,7 +164,7 @@ func (d *digest) pad() { // finalize prepares the hash to output data by padding and one final permutation of the state. func (d *digest) finalize() { d.pad() - d.keccakF() + keccakF1600(&d.a) } // squeeze outputs an arbitrary number of bytes from the hash state. @@ -192,7 +189,7 @@ func (d *digest) squeeze(in []byte, toSqueeze int) []byte { out = out[laneSize:] } if len(out) > 0 { - d.keccakF() + keccakF1600(&d.a) } } return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data. |