diff options
Diffstat (limited to 'core/vm/contracts.go')
-rw-r--r-- | core/vm/contracts.go | 349 |
1 files changed, 192 insertions, 157 deletions
diff --git a/core/vm/contracts.go b/core/vm/contracts.go index 407f198f0..c59779dac 100644 --- a/core/vm/contracts.go +++ b/core/vm/contracts.go @@ -29,9 +29,7 @@ import ( "golang.org/x/crypto/ripemd160" ) -var errBadPrecompileInput = errors.New("bad pre compile input") - -// Precompiled contract is the basic interface for native Go contracts. The implementation +// PrecompiledContract is the basic interface for native Go contracts. The implementation // requires a deterministic gas count based on the input size of the Run method of the // contract. type PrecompiledContract interface { @@ -39,61 +37,61 @@ type PrecompiledContract interface { Run(input []byte) ([]byte, error) // Run runs the precompiled contract } -// PrecompiledContracts contains the default set of ethereum contracts -var PrecompiledContracts = map[common.Address]PrecompiledContract{ +// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum +// contracts used in the Frontier and Homestead releases. +var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, } -// PrecompiledContractsMetropolis contains the default set of ethereum contracts -// for metropolis hardfork +// PrecompiledContractsMetropolis contains the default set of pre-compiled Ethereum +// contracts used in the Metropolis release. var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, - common.BytesToAddress([]byte{5}): &bigModexp{}, + common.BytesToAddress([]byte{5}): &bigModExp{}, common.BytesToAddress([]byte{6}): &bn256Add{}, common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, - common.BytesToAddress([]byte{8}): &pairing{}, + common.BytesToAddress([]byte{8}): &bn256Pairing{}, } -// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go +// RunPrecompiledContract runs and evaluates the output of a precompiled contract. func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { gas := p.RequiredGas(input) if contract.UseGas(gas) { return p.Run(input) - } else { - return nil, ErrOutOfGas } + return nil, ErrOutOfGas } -// ECRECOVER implemented as a native contract +// ECRECOVER implemented as a native contract. type ecrecover struct{} func (c *ecrecover) RequiredGas(input []byte) uint64 { return params.EcrecoverGas } -func (c *ecrecover) Run(in []byte) ([]byte, error) { +func (c *ecrecover) Run(input []byte) ([]byte, error) { const ecRecoverInputLength = 128 - in = common.RightPadBytes(in, ecRecoverInputLength) - // "in" is (hash, v, r, s), each 32 bytes + input = common.RightPadBytes(input, ecRecoverInputLength) + // "input" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) - r := new(big.Int).SetBytes(in[64:96]) - s := new(big.Int).SetBytes(in[96:128]) - v := in[63] - 27 + r := new(big.Int).SetBytes(input[64:96]) + s := new(big.Int).SetBytes(input[96:128]) + v := input[63] - 27 - // tighter sig s values in homestead only apply to tx sigs - if !allZero(in[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { + // tighter sig s values input homestead only apply to tx sigs + if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { return nil, nil } // v needs to be at the end for libsecp256k1 - pubKey, err := crypto.Ecrecover(in[:32], append(in[64:128], v)) + pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) // make sure the public key is a valid one if err != nil { return nil, nil @@ -103,7 +101,7 @@ func (c *ecrecover) Run(in []byte) ([]byte, error) { return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil } -// SHA256 implemented as a native contract +// SHA256 implemented as a native contract. type sha256hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. @@ -111,14 +109,14 @@ type sha256hash struct{} // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *sha256hash) RequiredGas(input []byte) uint64 { - return uint64(len(input)+31)/32*params.Sha256WordGas + params.Sha256Gas + return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas } -func (c *sha256hash) Run(in []byte) ([]byte, error) { - h := sha256.Sum256(in) +func (c *sha256hash) Run(input []byte) ([]byte, error) { + h := sha256.Sum256(input) return h[:], nil } -// RIPMED160 implemented as a native contract +// RIPMED160 implemented as a native contract. type ripemd160hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. @@ -126,15 +124,15 @@ type ripemd160hash struct{} // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *ripemd160hash) RequiredGas(input []byte) uint64 { - return uint64(len(input)+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas + return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas } -func (c *ripemd160hash) Run(in []byte) ([]byte, error) { +func (c *ripemd160hash) Run(input []byte) ([]byte, error) { ripemd := ripemd160.New() - ripemd.Write(in) + ripemd.Write(input) return common.LeftPadBytes(ripemd.Sum(nil), 32), nil } -// data copy implemented as a native contract +// data copy implemented as a native contract. type dataCopy struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. @@ -142,195 +140,232 @@ type dataCopy struct{} // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *dataCopy) RequiredGas(input []byte) uint64 { - return uint64(len(input)+31)/32*params.IdentityWordGas + params.IdentityGas + return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas } func (c *dataCopy) Run(in []byte) ([]byte, error) { return in, nil } -// bigModexp implements a native big integer exponential modular operation. -type bigModexp struct{} +// bigModExp implements a native big integer exponential modular operation. +type bigModExp struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. -// -// This method does not require any overflow checking as the input size gas costs -// required for anything significant is so high it's impossible to pay for. -func (c *bigModexp) RequiredGas(input []byte) uint64 { - // TODO reword required gas to have error reporting and convert arithmetic - // to uint64. - if len(input) < 3*32 { - input = append(input, make([]byte, 3*32-len(input))...) - } +func (c *bigModExp) RequiredGas(input []byte) uint64 { + // Pad the input with zeroes to the minimum size to read the field lengths + input = common.RightPadBytes(input, 96) + var ( - baseLen = new(big.Int).SetBytes(input[:31]) - expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1)) - modLen = new(big.Int).SetBytes(input[65:97]) + baseLen = new(big.Int).SetBytes(input[:32]) + expLen = new(big.Int).SetBytes(input[32:64]) + modLen = new(big.Int).SetBytes(input[64:96]) ) - x := new(big.Int).Set(math.BigMax(baseLen, modLen)) - x.Mul(x, x) - x.Mul(x, expLen) - x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv)) + input = input[96:] - return x.Uint64() -} + // Retrieve the head 32 bytes of exp for the adjusted exponent length + var expHead *big.Int + if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { + expHead = new(big.Int) + } else { + offset := int(baseLen.Uint64()) -func (c *bigModexp) Run(input []byte) ([]byte, error) { - if len(input) < 3*32 { - input = append(input, make([]byte, 3*32-len(input))...) + input = common.RightPadBytes(input, offset+32) + if expLen.Cmp(big.NewInt(32)) > 0 { + expHead = new(big.Int).SetBytes(input[offset : offset+32]) + } else { + expHead = new(big.Int).SetBytes(input[offset : offset+int(expLen.Uint64())]) + } } - // why 32-byte? These values won't fit anyway + // Calculate the adjusted exponent length + var msb int + if bitlen := expHead.BitLen(); bitlen > 0 { + msb = bitlen - 1 + } + adjExpLen := new(big.Int) + if expLen.Cmp(big.NewInt(32)) > 0 { + adjExpLen.Sub(expLen, big.NewInt(32)) + adjExpLen.Mul(big.NewInt(8), adjExpLen) + } + adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) + + // Calculate the gas cost of the operation + gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) + switch { + case gas.Cmp(big.NewInt(64)) <= 0: + gas.Mul(gas, gas) + case gas.Cmp(big.NewInt(1024)) <= 0: + gas = new(big.Int).Add( + new(big.Int).Div(new(big.Int).Mul(gas, gas), big.NewInt(4)), + new(big.Int).Sub(new(big.Int).Mul(big.NewInt(96), gas), big.NewInt(3072)), + ) + default: + gas = new(big.Int).Add( + new(big.Int).Div(new(big.Int).Mul(gas, gas), big.NewInt(16)), + new(big.Int).Sub(new(big.Int).Mul(big.NewInt(480), gas), big.NewInt(199680)), + ) + } + gas.Mul(gas, math.BigMax(adjExpLen, big.NewInt(1))) + gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) + + if gas.BitLen() > 64 { + return math.MaxUint64 + } + return gas.Uint64() +} + +func (c *bigModExp) Run(input []byte) ([]byte, error) { + // Pad the input with zeroes to the minimum size to read the field lengths + input = common.RightPadBytes(input, 96) + var ( baseLen = new(big.Int).SetBytes(input[:32]).Uint64() expLen = new(big.Int).SetBytes(input[32:64]).Uint64() modLen = new(big.Int).SetBytes(input[64:96]).Uint64() ) - input = input[96:] - if uint64(len(input)) < baseLen { - input = append(input, make([]byte, baseLen-uint64(len(input)))...) - } - base := new(big.Int).SetBytes(input[:baseLen]) - input = input[baseLen:] - if uint64(len(input)) < expLen { - input = append(input, make([]byte, expLen-uint64(len(input)))...) - } - exp := new(big.Int).SetBytes(input[:expLen]) + // Pad the input with zeroes to the minimum size to read the field contents + input = common.RightPadBytes(input, int(baseLen+expLen+modLen)) - input = input[expLen:] - if uint64(len(input)) < modLen { - input = append(input, make([]byte, modLen-uint64(len(input)))...) + var ( + base = new(big.Int).SetBytes(input[:baseLen]) + exp = new(big.Int).SetBytes(input[baseLen : baseLen+expLen]) + mod = new(big.Int).SetBytes(input[baseLen+expLen : baseLen+expLen+modLen]) + ) + if mod.BitLen() == 0 { + // Modulo 0 is undefined, return zero + return common.LeftPadBytes([]byte{}, int(modLen)), nil } - mod := new(big.Int).SetBytes(input[:modLen]) - - return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil + return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil } -type bn256Add struct{} - -// RequiredGas returns the gas required to execute the pre-compiled contract. -// -// This method does not require any overflow checking as the input size gas costs -// required for anything significant is so high it's impossible to pay for. -func (c *bn256Add) RequiredGas(input []byte) uint64 { - return 0 // TODO -} +var ( + // errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic + // curve point is not on the curve. + errNotOnCurve = errors.New("point not on elliptic curve") -func (c *bn256Add) Run(in []byte) ([]byte, error) { - in = common.RightPadBytes(in, 128) + // errInvalidCurvePoint is returned if a point being unmarshalled as a bn256 + // elliptic curve point is invalid. + errInvalidCurvePoint = errors.New("invalid elliptic curve point") +) - x, onCurve := new(bn256.G1).Unmarshal(in[:64]) +// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, +// returning it, or an error if the point is invalid. +func newCurvePoint(blob []byte) (*bn256.G1, error) { + p, onCurve := new(bn256.G1).Unmarshal(blob) if !onCurve { return nil, errNotOnCurve } - gx, gy, _, _ := x.CurvePoints() + gx, gy, _, _ := p.CurvePoints() if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } + return p, nil +} - y, onCurve := new(bn256.G1).Unmarshal(in[64:128]) +// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, +// returning it, or an error if the point is invalid. +func newTwistPoint(blob []byte) (*bn256.G2, error) { + p, onCurve := new(bn256.G2).Unmarshal(blob) if !onCurve { return nil, errNotOnCurve } - gx, gy, _, _ = y.CurvePoints() - if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { + x2, y2, _, _ := p.CurvePoints() + if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 || + y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } - x.Add(x, y) - - return x.Marshal(), nil + return p, nil } -type bn256ScalarMul struct{} +// bn256Add implements a native elliptic curve point addition. +type bn256Add struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. -// -// This method does not require any overflow checking as the input size gas costs -// required for anything significant is so high it's impossible to pay for. -func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { - return 0 // TODO +func (c *bn256Add) RequiredGas(input []byte) uint64 { + return params.Bn256AddGas } -func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) { - in = common.RightPadBytes(in, 96) +func (c *bn256Add) Run(input []byte) ([]byte, error) { + // Ensure we have enough data to operate on + input = common.RightPadBytes(input, 128) - g1, onCurve := new(bn256.G1).Unmarshal(in[:64]) - if !onCurve { - return nil, errNotOnCurve + x, err := newCurvePoint(input[:64]) + if err != nil { + return nil, err } - x, y, _, _ := g1.CurvePoints() - if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 { - return nil, errInvalidCurvePoint + y, err := newCurvePoint(input[64:128]) + if err != nil { + return nil, err } - g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96])) - - return g1.Marshal(), nil + x.Add(x, y) + return x.Marshal(), nil } -// pairing implements a pairing pre-compile for the bn256 curve -type pairing struct{} +// bn256ScalarMul implements a native elliptic curve scalar multiplication. +type bn256ScalarMul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. -// -// This method does not require any overflow checking as the input size gas costs -// required for anything significant is so high it's impossible to pay for. -func (c *pairing) RequiredGas(input []byte) uint64 { - //return 0 // TODO - k := (len(input) + 191) / pairSize - return uint64(60000*k + 40000) +func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { + return params.Bn256ScalarMulGas } -const pairSize = 192 +func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { + // Ensure we have enough data to operate on + input = common.RightPadBytes(input, 96) + + p, err := newCurvePoint(input[:64]) + if err != nil { + return nil, err + } + p.ScalarMult(p, new(big.Int).SetBytes(input[64:96])) + return p.Marshal(), nil +} var ( - true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} - fals32Byte = make([]byte, 32) - errNotOnCurve = errors.New("point not on elliptic curve") - errInvalidCurvePoint = errors.New("invalid elliptic curve point") + // true32Byte is returned if the bn256 pairing check succeeds. + true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} + + // false32Byte is returned if the bn256 pairing check fails. + false32Byte = make([]byte, 32) + + // errBadPairingInput is returned if the bn256 pairing input is invalid. + errBadPairingInput = errors.New("bad elliptic curve pairing size") ) -func (c *pairing) Run(in []byte) ([]byte, error) { - if len(in) == 0 { - return true32Byte, nil - } +// bn256Pairing implements a pairing pre-compile for the bn256 curve +type bn256Pairing struct{} - if len(in)%pairSize > 0 { - return nil, errBadPrecompileInput - } +// RequiredGas returns the gas required to execute the pre-compiled contract. +func (c *bn256Pairing) RequiredGas(input []byte) uint64 { + return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas +} +func (c *bn256Pairing) Run(input []byte) ([]byte, error) { + // Handle some corner cases cheaply + if len(input)%192 > 0 { + return nil, errBadPairingInput + } + // Convert the input into a set of coordinates var ( - g1s []*bn256.G1 - g2s []*bn256.G2 + cs []*bn256.G1 + ts []*bn256.G2 ) - for i := 0; i < len(in); i += pairSize { - g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64]) - if !onCurve { - return nil, errNotOnCurve - } - - x, y, _, _ := g1.CurvePoints() - if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 { - return nil, errInvalidCurvePoint + for i := 0; i < len(input); i += 192 { + c, err := newCurvePoint(input[i : i+64]) + if err != nil { + return nil, err } - - g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192]) - if !onCurve { - return nil, errNotOnCurve - } - x2, y2, _, _ := g2.CurvePoints() - if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 || - y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 { - return nil, errInvalidCurvePoint + t, err := newTwistPoint(input[i+64 : i+192]) + if err != nil { + return nil, err } - - g1s = append(g1s, g1) - g2s = append(g2s, g2) + cs = append(cs, c) + ts = append(ts, t) } - - isOne := bn256.PairingCheck(g1s, g2s) - if isOne { + // Execute the pairing checks and return the results + ok := bn256.PairingCheck(cs, ts) + if ok { return true32Byte, nil } - - return fals32Byte, nil + return false32Byte, nil } |