aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h')
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h264
1 files changed, 264 insertions, 0 deletions
diff --git a/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
new file mode 100644
index 000000000..4a172b3c5
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
@@ -0,0 +1,264 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+
+#ifndef _SECP256K1_ECDSA_IMPL_H_
+#define _SECP256K1_ECDSA_IMPL_H_
+
+#include "scalar.h"
+#include "field.h"
+#include "group.h"
+#include "ecmult.h"
+#include "ecmult_gen.h"
+#include "ecdsa.h"
+
+/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
+ * sage: for t in xrange(1023, -1, -1):
+ * .. p = 2**256 - 2**32 - t
+ * .. if p.is_prime():
+ * .. print '%x'%p
+ * .. break
+ * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
+ * sage: a = 0
+ * sage: b = 7
+ * sage: F = FiniteField (p)
+ * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
+ * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
+ */
+static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
+ 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
+);
+
+/** Difference between field and order, values 'p' and 'n' values defined in
+ * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
+ * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
+ * sage: a = 0
+ * sage: b = 7
+ * sage: F = FiniteField (p)
+ * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
+ * '14551231950b75fc4402da1722fc9baee'
+ */
+static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
+ 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
+);
+
+static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
+ unsigned char ra[32] = {0}, sa[32] = {0};
+ const unsigned char *rp;
+ const unsigned char *sp;
+ size_t lenr;
+ size_t lens;
+ int overflow;
+ if (sig[0] != 0x30) {
+ return 0;
+ }
+ lenr = sig[3];
+ if (5+lenr >= size) {
+ return 0;
+ }
+ lens = sig[lenr+5];
+ if (sig[1] != lenr+lens+4) {
+ return 0;
+ }
+ if (lenr+lens+6 > size) {
+ return 0;
+ }
+ if (sig[2] != 0x02) {
+ return 0;
+ }
+ if (lenr == 0) {
+ return 0;
+ }
+ if (sig[lenr+4] != 0x02) {
+ return 0;
+ }
+ if (lens == 0) {
+ return 0;
+ }
+ sp = sig + 6 + lenr;
+ while (lens > 0 && sp[0] == 0) {
+ lens--;
+ sp++;
+ }
+ if (lens > 32) {
+ return 0;
+ }
+ rp = sig + 4;
+ while (lenr > 0 && rp[0] == 0) {
+ lenr--;
+ rp++;
+ }
+ if (lenr > 32) {
+ return 0;
+ }
+ memcpy(ra + 32 - lenr, rp, lenr);
+ memcpy(sa + 32 - lens, sp, lens);
+ overflow = 0;
+ secp256k1_scalar_set_b32(rr, ra, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ secp256k1_scalar_set_b32(rs, sa, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ return 1;
+}
+
+static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
+ unsigned char r[33] = {0}, s[33] = {0};
+ unsigned char *rp = r, *sp = s;
+ size_t lenR = 33, lenS = 33;
+ secp256k1_scalar_get_b32(&r[1], ar);
+ secp256k1_scalar_get_b32(&s[1], as);
+ while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
+ while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
+ if (*size < 6+lenS+lenR) {
+ *size = 6 + lenS + lenR;
+ return 0;
+ }
+ *size = 6 + lenS + lenR;
+ sig[0] = 0x30;
+ sig[1] = 4 + lenS + lenR;
+ sig[2] = 0x02;
+ sig[3] = lenR;
+ memcpy(sig+4, rp, lenR);
+ sig[4+lenR] = 0x02;
+ sig[5+lenR] = lenS;
+ memcpy(sig+lenR+6, sp, lenS);
+ return 1;
+}
+
+static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
+ unsigned char c[32];
+ secp256k1_scalar sn, u1, u2;
+ secp256k1_fe xr;
+ secp256k1_gej pubkeyj;
+ secp256k1_gej pr;
+
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+
+ secp256k1_scalar_inverse_var(&sn, sigs);
+ secp256k1_scalar_mul(&u1, &sn, message);
+ secp256k1_scalar_mul(&u2, &sn, sigr);
+ secp256k1_gej_set_ge(&pubkeyj, pubkey);
+ secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
+ if (secp256k1_gej_is_infinity(&pr)) {
+ return 0;
+ }
+ secp256k1_scalar_get_b32(c, sigr);
+ secp256k1_fe_set_b32(&xr, c);
+
+ /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
+ * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
+ * compute the remainder modulo n, and compare it to xr. However:
+ *
+ * xr == X(pr) mod n
+ * <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
+ * [Since 2 * n > p, h can only be 0 or 1]
+ * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
+ * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
+ * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
+ * [Multiplying both sides of the equations by pr.z^2 mod p]
+ * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
+ *
+ * Thus, we can avoid the inversion, but we have to check both cases separately.
+ * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
+ */
+ if (secp256k1_gej_eq_x_var(&xr, &pr)) {
+ /* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
+ return 1;
+ }
+ if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
+ /* xr + p >= n, so we can skip testing the second case. */
+ return 0;
+ }
+ secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
+ if (secp256k1_gej_eq_x_var(&xr, &pr)) {
+ /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
+ return 1;
+ }
+ return 0;
+}
+
+static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
+ unsigned char brx[32];
+ secp256k1_fe fx;
+ secp256k1_ge x;
+ secp256k1_gej xj;
+ secp256k1_scalar rn, u1, u2;
+ secp256k1_gej qj;
+
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+
+ secp256k1_scalar_get_b32(brx, sigr);
+ VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
+ if (recid & 2) {
+ if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
+ return 0;
+ }
+ secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
+ }
+ if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&xj, &x);
+ secp256k1_scalar_inverse_var(&rn, sigr);
+ secp256k1_scalar_mul(&u1, &rn, message);
+ secp256k1_scalar_negate(&u1, &u1);
+ secp256k1_scalar_mul(&u2, &rn, sigs);
+ secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
+ secp256k1_ge_set_gej_var(pubkey, &qj);
+ return !secp256k1_gej_is_infinity(&qj);
+}
+
+static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
+ unsigned char b[32];
+ secp256k1_gej rp;
+ secp256k1_ge r;
+ secp256k1_scalar n;
+ int overflow = 0;
+
+ secp256k1_ecmult_gen(ctx, &rp, nonce);
+ secp256k1_ge_set_gej(&r, &rp);
+ secp256k1_fe_normalize(&r.x);
+ secp256k1_fe_normalize(&r.y);
+ secp256k1_fe_get_b32(b, &r.x);
+ secp256k1_scalar_set_b32(sigr, b, &overflow);
+ if (secp256k1_scalar_is_zero(sigr)) {
+ /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
+ secp256k1_gej_clear(&rp);
+ secp256k1_ge_clear(&r);
+ return 0;
+ }
+ if (recid) {
+ *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
+ }
+ secp256k1_scalar_mul(&n, sigr, seckey);
+ secp256k1_scalar_add(&n, &n, message);
+ secp256k1_scalar_inverse(sigs, nonce);
+ secp256k1_scalar_mul(sigs, sigs, &n);
+ secp256k1_scalar_clear(&n);
+ secp256k1_gej_clear(&rp);
+ secp256k1_ge_clear(&r);
+ if (secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+ if (secp256k1_scalar_is_high(sigs)) {
+ secp256k1_scalar_negate(sigs, sigs);
+ if (recid) {
+ *recid ^= 1;
+ }
+ }
+ return 1;
+}
+
+#endif