// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package network import ( "context" "sync" "testing" "time" "github.com/tangerine-network/go-tangerine/p2p/enode" ) var requestedPeerID = enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8") var sourcePeerID = enode.HexID("99d8594b52298567d2ca3f4c441a5ba0140ee9245e26460d01102a52773c73b9") // mockRequester pushes every request to the requestC channel when its doRequest function is called type mockRequester struct { // requests []Request requestC chan *Request // when a request is coming it is pushed to requestC waitTimes []time.Duration // with waitTimes[i] you can define how much to wait on the ith request (optional) count int //counts the number of requests quitC chan struct{} } func newMockRequester(waitTimes ...time.Duration) *mockRequester { return &mockRequester{ requestC: make(chan *Request), waitTimes: waitTimes, quitC: make(chan struct{}), } } func (m *mockRequester) doRequest(ctx context.Context, request *Request) (*enode.ID, chan struct{}, error) { waitTime := time.Duration(0) if m.count < len(m.waitTimes) { waitTime = m.waitTimes[m.count] m.count++ } time.Sleep(waitTime) m.requestC <- request // if there is a Source in the request use that, if not use the global requestedPeerId source := request.Source if source == nil { source = &requestedPeerID } return source, m.quitC, nil } // TestFetcherSingleRequest creates a Fetcher using mockRequester, and run it with a sample set of peers to skip. // mockRequester pushes a Request on a channel every time the request function is called. Using // this channel we test if calling Fetcher.Request calls the request function, and whether it uses // the correct peers to skip which we provided for the fetcher.run function. func TestFetcherSingleRequest(t *testing.T) { requester := newMockRequester() addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) peers := []string{"a", "b", "c", "d"} peersToSkip := &sync.Map{} for _, p := range peers { peersToSkip.Store(p, time.Now()) } go fetcher.run(peersToSkip) fetcher.Request(0) select { case request := <-requester.requestC: // request should contain all peers from peersToSkip provided to the fetcher for _, p := range peers { if _, ok := request.peersToSkip.Load(p); !ok { t.Fatalf("request.peersToSkip misses peer") } } // source peer should be also added to peersToSkip eventually time.Sleep(100 * time.Millisecond) if _, ok := request.peersToSkip.Load(requestedPeerID.String()); !ok { t.Fatalf("request.peersToSkip does not contain peer returned by the request function") } // hopCount in the forwarded request should be incremented if request.HopCount != 1 { t.Fatalf("Expected request.HopCount 1 got %v", request.HopCount) } // fetch should trigger a request, if it doesn't happen in time, test should fail case <-time.After(200 * time.Millisecond): t.Fatalf("fetch timeout") } } // TestCancelStopsFetcher tests that a cancelled fetcher does not initiate further requests even if its fetch function is called func TestFetcherCancelStopsFetcher(t *testing.T) { requester := newMockRequester() addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) fetcher := NewFetcher(ctx, addr, requester.doRequest, true) peersToSkip := &sync.Map{} // we start the fetcher, and then we immediately cancel the context go fetcher.run(peersToSkip) cancel() // we call Request with an active context fetcher.Request(0) // fetcher should not initiate request, we can only check by waiting a bit and making sure no request is happening select { case <-requester.requestC: t.Fatalf("cancelled fetcher initiated request") case <-time.After(200 * time.Millisecond): } } // TestFetchCancelStopsRequest tests that calling a Request function with a cancelled context does not initiate a request func TestFetcherCancelStopsRequest(t *testing.T) { t.Skip("since context is now per fetcher, this test is likely redundant") requester := newMockRequester(100 * time.Millisecond) addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) peersToSkip := &sync.Map{} // we start the fetcher with an active context go fetcher.run(peersToSkip) // we call Request with a cancelled context fetcher.Request(0) // fetcher should not initiate request, we can only check by waiting a bit and making sure no request is happening select { case <-requester.requestC: t.Fatalf("cancelled fetch function initiated request") case <-time.After(200 * time.Millisecond): } // if there is another Request with active context, there should be a request, because the fetcher itself is not cancelled fetcher.Request(0) select { case <-requester.requestC: case <-time.After(200 * time.Millisecond): t.Fatalf("expected request") } } // TestOfferUsesSource tests Fetcher Offer behavior. // In this case there should be 1 (and only one) request initiated from the source peer, and the // source nodeid should appear in the peersToSkip map. func TestFetcherOfferUsesSource(t *testing.T) { requester := newMockRequester(100 * time.Millisecond) addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) peersToSkip := &sync.Map{} // start the fetcher go fetcher.run(peersToSkip) // call the Offer function with the source peer fetcher.Offer(&sourcePeerID) // fetcher should not initiate request select { case <-requester.requestC: t.Fatalf("fetcher initiated request") case <-time.After(200 * time.Millisecond): } // call Request after the Offer fetcher.Request(0) // there should be exactly 1 request coming from fetcher var request *Request select { case request = <-requester.requestC: if *request.Source != sourcePeerID { t.Fatalf("Expected source id %v got %v", sourcePeerID, request.Source) } case <-time.After(200 * time.Millisecond): t.Fatalf("fetcher did not initiate request") } select { case <-requester.requestC: t.Fatalf("Fetcher number of requests expected 1 got 2") case <-time.After(200 * time.Millisecond): } // source peer should be added to peersToSkip eventually time.Sleep(100 * time.Millisecond) if _, ok := request.peersToSkip.Load(sourcePeerID.String()); !ok { t.Fatalf("SourcePeerId not added to peersToSkip") } } func TestFetcherOfferAfterRequestUsesSourceFromContext(t *testing.T) { requester := newMockRequester(100 * time.Millisecond) addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) peersToSkip := &sync.Map{} // start the fetcher go fetcher.run(peersToSkip) // call Request first fetcher.Request(0) // there should be a request coming from fetcher var request *Request select { case request = <-requester.requestC: if request.Source != nil { t.Fatalf("Incorrect source peer id, expected nil got %v", request.Source) } case <-time.After(200 * time.Millisecond): t.Fatalf("fetcher did not initiate request") } // after the Request call Offer fetcher.Offer(&sourcePeerID) // there should be a request coming from fetcher select { case request = <-requester.requestC: if *request.Source != sourcePeerID { t.Fatalf("Incorrect source peer id, expected %v got %v", sourcePeerID, request.Source) } case <-time.After(200 * time.Millisecond): t.Fatalf("fetcher did not initiate request") } // source peer should be added to peersToSkip eventually time.Sleep(100 * time.Millisecond) if _, ok := request.peersToSkip.Load(sourcePeerID.String()); !ok { t.Fatalf("SourcePeerId not added to peersToSkip") } } // TestFetcherRetryOnTimeout tests that fetch retries after searchTimeOut has passed func TestFetcherRetryOnTimeout(t *testing.T) { requester := newMockRequester() addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) // set searchTimeOut to low value so the test is quicker fetcher.searchTimeout = 250 * time.Millisecond peersToSkip := &sync.Map{} // start the fetcher go fetcher.run(peersToSkip) // call the fetch function with an active context fetcher.Request(0) // after 100ms the first request should be initiated time.Sleep(100 * time.Millisecond) select { case <-requester.requestC: default: t.Fatalf("fetch did not initiate request") } // after another 100ms no new request should be initiated, because search timeout is 250ms time.Sleep(100 * time.Millisecond) select { case <-requester.requestC: t.Fatalf("unexpected request from fetcher") default: } // after another 300ms search timeout is over, there should be a new request time.Sleep(300 * time.Millisecond) select { case <-requester.requestC: default: t.Fatalf("fetch did not retry request") } } // TestFetcherFactory creates a FetcherFactory and checks if the factory really creates and starts // a Fetcher when it return a fetch function. We test the fetching functionality just by checking if // a request is initiated when the fetch function is called func TestFetcherFactory(t *testing.T) { requester := newMockRequester(100 * time.Millisecond) addr := make([]byte, 32) fetcherFactory := NewFetcherFactory(requester.doRequest, false) peersToSkip := &sync.Map{} fetcher := fetcherFactory.New(context.Background(), addr, peersToSkip) fetcher.Request(0) // check if the created fetchFunction really starts a fetcher and initiates a request select { case <-requester.requestC: case <-time.After(200 * time.Millisecond): t.Fatalf("fetch timeout") } } func TestFetcherRequestQuitRetriesRequest(t *testing.T) { requester := newMockRequester() addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) // make sure the searchTimeout is long so it is sure the request is not // retried because of timeout fetcher.searchTimeout = 10 * time.Second peersToSkip := &sync.Map{} go fetcher.run(peersToSkip) fetcher.Request(0) select { case <-requester.requestC: case <-time.After(200 * time.Millisecond): t.Fatalf("request is not initiated") } close(requester.quitC) select { case <-requester.requestC: case <-time.After(200 * time.Millisecond): t.Fatalf("request is not initiated after failed request") } } // TestRequestSkipPeer checks if PeerSkip function will skip provided peer // and not skip unknown one. func TestRequestSkipPeer(t *testing.T) { addr := make([]byte, 32) peers := []enode.ID{ enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8"), enode.HexID("99d8594b52298567d2ca3f4c441a5ba0140ee9245e26460d01102a52773c73b9"), } peersToSkip := new(sync.Map) peersToSkip.Store(peers[0].String(), time.Now()) r := NewRequest(addr, false, peersToSkip) if !r.SkipPeer(peers[0].String()) { t.Errorf("peer not skipped") } if r.SkipPeer(peers[1].String()) { t.Errorf("peer skipped") } } // TestRequestSkipPeerExpired checks if a peer to skip is not skipped // after RequestTimeout has passed. func TestRequestSkipPeerExpired(t *testing.T) { addr := make([]byte, 32) peer := enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8") // set RequestTimeout to a low value and reset it after the test defer func(t time.Duration) { RequestTimeout = t }(RequestTimeout) RequestTimeout = 250 * time.Millisecond peersToSkip := new(sync.Map) peersToSkip.Store(peer.String(), time.Now()) r := NewRequest(addr, false, peersToSkip) if !r.SkipPeer(peer.String()) { t.Errorf("peer not skipped") } time.Sleep(500 * time.Millisecond) if r.SkipPeer(peer.String()) { t.Errorf("peer skipped") } } // TestRequestSkipPeerPermanent checks if a peer to skip is not skipped // after RequestTimeout is not skipped if it is set for a permanent skipping // by value to peersToSkip map is not time.Duration. func TestRequestSkipPeerPermanent(t *testing.T) { addr := make([]byte, 32) peer := enode.HexID("3431c3939e1ee2a6345e976a8234f9870152d64879f30bc272a074f6859e75e8") // set RequestTimeout to a low value and reset it after the test defer func(t time.Duration) { RequestTimeout = t }(RequestTimeout) RequestTimeout = 250 * time.Millisecond peersToSkip := new(sync.Map) peersToSkip.Store(peer.String(), true) r := NewRequest(addr, false, peersToSkip) if !r.SkipPeer(peer.String()) { t.Errorf("peer not skipped") } time.Sleep(500 * time.Millisecond) if !r.SkipPeer(peer.String()) { t.Errorf("peer not skipped") } } func TestFetcherMaxHopCount(t *testing.T) { requester := newMockRequester() addr := make([]byte, 32) ctx, cancel := context.WithCancel(context.Background()) defer cancel() fetcher := NewFetcher(ctx, addr, requester.doRequest, true) peersToSkip := &sync.Map{} go fetcher.run(peersToSkip) // if hopCount is already at max no request should be initiated select { case <-requester.requestC: t.Fatalf("cancelled fetcher initiated request") case <-time.After(200 * time.Millisecond): } }