// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // Package pot see doc.go package pot import ( "encoding/binary" "fmt" "math/rand" "strconv" "strings" "github.com/ethereum/go-ethereum/common" ) var ( zerosBin = Address{}.Bin() ) // Address is an alias for common.Hash type Address common.Hash // NewAddressFromBytes constructs an Address from a byte slice func NewAddressFromBytes(b []byte) Address { h := common.Hash{} copy(h[:], b) return Address(h) } func (a Address) IsZero() bool { return a.Bin() == zerosBin } func (a Address) String() string { return fmt.Sprintf("%x", a[:]) } // MarshalJSON Address serialisation func (a *Address) MarshalJSON() (out []byte, err error) { return []byte(`"` + a.String() + `"`), nil } // UnmarshalJSON Address deserialisation func (a *Address) UnmarshalJSON(value []byte) error { *a = Address(common.HexToHash(string(value[1 : len(value)-1]))) return nil } // Bin returns the string form of the binary representation of an address (only first 8 bits) func (a Address) Bin() string { return ToBin(a[:]) } // ToBin converts a byteslice to the string binary representation func ToBin(a []byte) string { var bs []string for _, b := range a { bs = append(bs, fmt.Sprintf("%08b", b)) } return strings.Join(bs, "") } // Bytes returns the Address as a byte slice func (a Address) Bytes() []byte { return a[:] } /* Proximity(x, y) returns the proximity order of the MSB distance between x and y The distance metric MSB(x, y) of two equal length byte sequences x an y is the value of the binary integer cast of the x^y, ie., x and y bitwise xor-ed. the binary cast is big endian: most significant bit first (=MSB). Proximity(x, y) is a discrete logarithmic scaling of the MSB distance. It is defined as the reverse rank of the integer part of the base 2 logarithm of the distance. It is calculated by counting the number of common leading zeros in the (MSB) binary representation of the x^y. (0 farthest, 255 closest, 256 self) */ func proximity(one, other Address) (ret int, eq bool) { return posProximity(one, other, 0) } // posProximity(a, b, pos) returns proximity order of b wrt a (symmetric) pretending // the first pos bits match, checking only bits index >= pos func posProximity(one, other Address, pos int) (ret int, eq bool) { for i := pos / 8; i < len(one); i++ { if one[i] == other[i] { continue } oxo := one[i] ^ other[i] start := 0 if i == pos/8 { start = pos % 8 } for j := start; j < 8; j++ { if (oxo>>uint8(7-j))&0x01 != 0 { return i*8 + j, false } } } return len(one) * 8, true } // ProxCmp compares the distances a->target and b->target. // Returns -1 if a is closer to target, 1 if b is closer to target // and 0 if they are equal. func ProxCmp(a, x, y interface{}) int { return proxCmp(ToBytes(a), ToBytes(x), ToBytes(y)) } func proxCmp(a, x, y []byte) int { for i := range a { dx := x[i] ^ a[i] dy := y[i] ^ a[i] if dx > dy { return 1 } else if dx < dy { return -1 } } return 0 } // RandomAddressAt (address, prox) generates a random address // at proximity order prox relative to address // if prox is negative a random address is generated func RandomAddressAt(self Address, prox int) (addr Address) { addr = self pos := -1 if prox >= 0 { pos = prox / 8 trans := prox % 8 transbytea := byte(0) for j := 0; j <= trans; j++ { transbytea |= 1 << uint8(7-j) } flipbyte := byte(1 << uint8(7-trans)) transbyteb := transbytea ^ byte(255) randbyte := byte(rand.Intn(255)) addr[pos] = ((addr[pos] & transbytea) ^ flipbyte) | randbyte&transbyteb } for i := pos + 1; i < len(addr); i++ { addr[i] = byte(rand.Intn(255)) } return } // RandomAddress generates a random address func RandomAddress() Address { return RandomAddressAt(Address{}, -1) } // NewAddressFromString creates a byte slice from a string in binary representation func NewAddressFromString(s string) []byte { ha := [32]byte{} t := s + zerosBin[:len(zerosBin)-len(s)] for i := 0; i < 4; i++ { n, err := strconv.ParseUint(t[i*64:(i+1)*64], 2, 64) if err != nil { panic("wrong format: " + err.Error()) } binary.BigEndian.PutUint64(ha[i*8:(i+1)*8], n) } return ha[:] } // BytesAddress is an interface for elements addressable by a byte slice type BytesAddress interface { Address() []byte } // ToBytes turns the Val into bytes func ToBytes(v Val) []byte { if v == nil { return nil } b, ok := v.([]byte) if !ok { ba, ok := v.(BytesAddress) if !ok { panic(fmt.Sprintf("unsupported value type %T", v)) } b = ba.Address() } return b } // DefaultPof returns a proximity order comparison operator function // where all func DefaultPof(max int) func(one, other Val, pos int) (int, bool) { return func(one, other Val, pos int) (int, bool) { po, eq := proximityOrder(ToBytes(one), ToBytes(other), pos) if po >= max { eq = true po = max } return po, eq } } func proximityOrder(one, other []byte, pos int) (int, bool) { for i := pos / 8; i < len(one); i++ { if one[i] == other[i] { continue } oxo := one[i] ^ other[i] start := 0 if i == pos/8 { start = pos % 8 } for j := start; j < 8; j++ { if (oxo>>uint8(7-j))&0x01 != 0 { return i*8 + j, false } } } return len(one) * 8, true } // Label displays the node's key in binary format func Label(v Val) string { if v == nil { return "<nil>" } if s, ok := v.(fmt.Stringer); ok { return s.String() } if b, ok := v.([]byte); ok { return ToBin(b) } panic(fmt.Sprintf("unsupported value type %T", v)) }