1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
package core
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/state"
"github.com/ethereum/go-ethereum/vm"
)
const tryJit = false
/*
* The State transitioning model
*
* A state transition is a change made when a transaction is applied to the current world state
* The state transitioning model does all all the necessary work to work out a valid new state root.
* 1) Nonce handling
* 2) Pre pay / buy gas of the coinbase (miner)
* 3) Create a new state object if the recipient is \0*32
* 4) Value transfer
* == If contract creation ==
* 4a) Attempt to run transaction data
* 4b) If valid, use result as code for the new state object
* == end ==
* 5) Run Script section
* 6) Derive new state root
*/
type StateTransition struct {
coinbase []byte
msg Message
gas, gasPrice *big.Int
initialGas *big.Int
value *big.Int
data []byte
state *state.StateDB
cb, rec, sen *state.StateObject
env vm.Environment
}
type Message interface {
Hash() []byte
From() []byte
To() []byte
GasPrice() *big.Int
Gas() *big.Int
Value() *big.Int
Nonce() uint64
Data() []byte
}
func AddressFromMessage(msg Message) []byte {
// Generate a new address
return crypto.Sha3(ethutil.NewValue([]interface{}{msg.From(), msg.Nonce()}).Encode())[12:]
}
func MessageCreatesContract(msg Message) bool {
return len(msg.To()) == 0
}
func MessageGasValue(msg Message) *big.Int {
return new(big.Int).Mul(msg.Gas(), msg.GasPrice())
}
func NewStateTransition(env vm.Environment, msg Message, coinbase *state.StateObject) *StateTransition {
return &StateTransition{
coinbase: coinbase.Address(),
env: env,
msg: msg,
gas: new(big.Int),
gasPrice: new(big.Int).Set(msg.GasPrice()),
initialGas: new(big.Int),
value: msg.Value(),
data: msg.Data(),
state: env.State(),
cb: coinbase,
}
}
func (self *StateTransition) Coinbase() *state.StateObject {
return self.state.GetOrNewStateObject(self.coinbase)
}
func (self *StateTransition) From() *state.StateObject {
return self.state.GetOrNewStateObject(self.msg.From())
}
func (self *StateTransition) To() *state.StateObject {
if self.msg != nil && MessageCreatesContract(self.msg) {
return nil
}
return self.state.GetOrNewStateObject(self.msg.To())
}
func (self *StateTransition) UseGas(amount *big.Int) error {
if self.gas.Cmp(amount) < 0 {
return OutOfGasError()
}
self.gas.Sub(self.gas, amount)
return nil
}
func (self *StateTransition) AddGas(amount *big.Int) {
self.gas.Add(self.gas, amount)
}
func (self *StateTransition) BuyGas() error {
var err error
sender := self.From()
if sender.Balance().Cmp(MessageGasValue(self.msg)) < 0 {
return fmt.Errorf("insufficient ETH for gas (%x). Req %v, has %v", sender.Address()[:4], MessageGasValue(self.msg), sender.Balance())
}
coinbase := self.Coinbase()
err = coinbase.BuyGas(self.msg.Gas(), self.msg.GasPrice())
if err != nil {
return err
}
self.AddGas(self.msg.Gas())
self.initialGas.Set(self.msg.Gas())
sender.SubBalance(MessageGasValue(self.msg))
return nil
}
func (self *StateTransition) preCheck() (err error) {
var (
msg = self.msg
sender = self.From()
)
// Make sure this transaction's nonce is correct
if sender.Nonce() != msg.Nonce() {
return NonceError(msg.Nonce(), sender.Nonce())
}
// Pre-pay gas / Buy gas of the coinbase account
if err = self.BuyGas(); err != nil {
return err
}
return nil
}
func (self *StateTransition) TransitionState() (ret []byte, err error) {
statelogger.Debugf("(~) %x\n", self.msg.Hash())
// XXX Transactions after this point are considered valid.
if err = self.preCheck(); err != nil {
return
}
var (
msg = self.msg
sender = self.From()
)
defer self.RefundGas()
// Increment the nonce for the next transaction
self.state.SetNonce(sender.Address(), sender.Nonce()+1)
//sender.Nonce += 1
// Transaction gas
if err = self.UseGas(vm.GasTx); err != nil {
return
}
// Pay data gas
var dgas int64
for _, byt := range self.data {
if byt != 0 {
dgas += vm.GasData.Int64()
} else {
dgas += 1 // This is 1/5. If GasData changes this fails
}
}
if err = self.UseGas(big.NewInt(dgas)); err != nil {
return
}
//stateCopy := self.env.State().Copy()
vmenv := self.env
var ref vm.ContextRef
if MessageCreatesContract(msg) {
contract := MakeContract(msg, self.state)
ret, err, ref = vmenv.Create(sender, contract.Address(), self.msg.Data(), self.gas, self.gasPrice, self.value)
if err == nil {
dataGas := big.NewInt(int64(len(ret)))
dataGas.Mul(dataGas, vm.GasCreateByte)
if err := self.UseGas(dataGas); err == nil {
ref.SetCode(ret)
}
}
/*
if vmenv, ok := vmenv.(*VMEnv); ok && tryJit {
statelogger.Infof("CREATE: re-running using JIT (PH=%x)\n", stateCopy.Root()[:4])
// re-run using the JIT (validation for the JIT)
goodState := vmenv.State().Copy()
vmenv.state = stateCopy
vmenv.SetVmType(vm.JitVmTy)
vmenv.Create(sender, contract.Address(), self.msg.Data(), self.gas, self.gasPrice, self.value)
statelogger.Infof("DONE PH=%x STD_H=%x JIT_H=%x\n", stateCopy.Root()[:4], goodState.Root()[:4], vmenv.State().Root()[:4])
self.state.Set(goodState)
}
*/
} else {
ret, err = vmenv.Call(self.From(), self.To().Address(), self.msg.Data(), self.gas, self.gasPrice, self.value)
/*
if vmenv, ok := vmenv.(*VMEnv); ok && tryJit {
statelogger.Infof("CALL: re-running using JIT (PH=%x)\n", stateCopy.Root()[:4])
// re-run using the JIT (validation for the JIT)
goodState := vmenv.State().Copy()
vmenv.state = stateCopy
vmenv.SetVmType(vm.JitVmTy)
vmenv.Call(self.From(), self.To().Address(), self.msg.Data(), self.gas, self.gasPrice, self.value)
statelogger.Infof("DONE PH=%x STD_H=%x JIT_H=%x\n", stateCopy.Root()[:4], goodState.Root()[:4], vmenv.State().Root()[:4])
self.state.Set(goodState)
}
*/
}
if err != nil {
self.UseGas(self.gas)
}
return
}
// Converts an transaction in to a state object
func MakeContract(msg Message, state *state.StateDB) *state.StateObject {
addr := AddressFromMessage(msg)
contract := state.GetOrNewStateObject(addr)
contract.SetInitCode(msg.Data())
return contract
}
func (self *StateTransition) RefundGas() {
coinbase, sender := self.Coinbase(), self.From()
// Return remaining gas
remaining := new(big.Int).Mul(self.gas, self.msg.GasPrice())
fmt.Println("REFUND:", remaining)
sender.AddBalance(remaining)
uhalf := new(big.Int).Div(self.GasUsed(), ethutil.Big2)
for addr, ref := range self.state.Refunds() {
refund := ethutil.BigMin(uhalf, ref)
self.gas.Add(self.gas, refund)
addToIt := refund.Mul(refund, self.msg.GasPrice())
fmt.Println("ADD TO IT", addToIt)
self.state.AddBalance([]byte(addr), addToIt)
}
coinbase.RefundGas(self.gas, self.msg.GasPrice())
}
func (self *StateTransition) GasUsed() *big.Int {
return new(big.Int).Sub(self.initialGas, self.gas)
}
|