1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
)
// Iterator is a key-value trie iterator to traverse the data contents.
type Iterator struct {
trie *Trie
Key []byte // Current data key on which the iterator is positioned on
Value []byte // Current data value on which the iterator is positioned on
}
// NewIterator creates a new key-value iterator.
func NewIterator(trie *Trie) *Iterator {
return &Iterator{trie: trie, Key: nil}
}
// Next moves the iterator forward with one key-value entry.
func (self *Iterator) Next() bool {
isIterStart := false
if self.Key == nil {
isIterStart = true
self.Key = make([]byte, 32)
}
key := remTerm(compactHexDecode(self.Key))
k := self.next(self.trie.root, key, isIterStart)
self.Key = []byte(decodeCompact(k))
return len(k) > 0
}
func (self *Iterator) next(node interface{}, key []byte, isIterStart bool) []byte {
if node == nil {
return nil
}
switch node := node.(type) {
case fullNode:
if len(key) > 0 {
k := self.next(node[key[0]], key[1:], isIterStart)
if k != nil {
return append([]byte{key[0]}, k...)
}
}
var r byte
if len(key) > 0 {
r = key[0] + 1
}
for i := r; i < 16; i++ {
k := self.key(node[i])
if k != nil {
return append([]byte{i}, k...)
}
}
case shortNode:
k := remTerm(node.Key)
if vnode, ok := node.Val.(valueNode); ok {
switch bytes.Compare([]byte(k), key) {
case 0:
if isIterStart {
self.Value = vnode
return k
}
case 1:
self.Value = vnode
return k
}
} else {
cnode := node.Val
var ret []byte
skey := key[len(k):]
if bytes.HasPrefix(key, k) {
ret = self.next(cnode, skey, isIterStart)
} else if bytes.Compare(k, key[:len(k)]) > 0 {
return self.key(node)
}
if ret != nil {
return append(k, ret...)
}
}
case hashNode:
rn, err := self.trie.resolveHash(node, nil, nil)
if err != nil && glog.V(logger.Error) {
glog.Errorf("Unhandled trie error: %v", err)
}
return self.next(rn, key, isIterStart)
}
return nil
}
func (self *Iterator) key(node interface{}) []byte {
switch node := node.(type) {
case shortNode:
// Leaf node
k := remTerm(node.Key)
if vnode, ok := node.Val.(valueNode); ok {
self.Value = vnode
return k
}
return append(k, self.key(node.Val)...)
case fullNode:
if node[16] != nil {
self.Value = node[16].(valueNode)
return []byte{16}
}
for i := 0; i < 16; i++ {
k := self.key(node[i])
if k != nil {
return append([]byte{byte(i)}, k...)
}
}
case hashNode:
rn, err := self.trie.resolveHash(node, nil, nil)
if err != nil && glog.V(logger.Error) {
glog.Errorf("Unhandled trie error: %v", err)
}
return self.key(rn)
}
return nil
}
// nodeIteratorState represents the iteration state at one particular node of the
// trie, which can be resumed at a later invocation.
type nodeIteratorState struct {
hash common.Hash // Hash of the node being iterated (nil if not standalone)
node node // Trie node being iterated
parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
child int // Child to be processed next
}
// NodeIterator is an iterator to traverse the trie post-order.
type NodeIterator struct {
trie *Trie // Trie being iterated
stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
Hash common.Hash // Hash of the current node being iterated (nil if not standalone)
Node node // Current node being iterated (internal representation)
Parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
Leaf bool // Flag whether the current node is a value (data) node
LeafBlob []byte // Data blob contained within a leaf (otherwise nil)
}
// NewNodeIterator creates an post-order trie iterator.
func NewNodeIterator(trie *Trie) *NodeIterator {
if bytes.Compare(trie.Root(), emptyRoot.Bytes()) == 0 {
return new(NodeIterator)
}
return &NodeIterator{trie: trie}
}
// Next moves the iterator to the next node, returning whether there are any
// further nodes.
func (it *NodeIterator) Next() bool {
it.step()
return it.retrieve()
}
// step moves the iterator to the next node of the trie.
func (it *NodeIterator) step() {
// Abort if we reached the end of the iteration
if it.trie == nil {
return
}
// Initialize the iterator if we've just started, or pop off the old node otherwise
if len(it.stack) == 0 {
it.stack = append(it.stack, &nodeIteratorState{node: it.trie.root, child: -1})
if it.stack[0].node == nil {
panic(fmt.Sprintf("root node missing: %x", it.trie.Root()))
}
} else {
it.stack = it.stack[:len(it.stack)-1]
if len(it.stack) == 0 {
it.trie = nil
return
}
}
// Continue iteration to the next child
for {
parent := it.stack[len(it.stack)-1]
ancestor := parent.hash
if (ancestor == common.Hash{}) {
ancestor = parent.parent
}
if node, ok := parent.node.(fullNode); ok {
// Full node, traverse all children, then the node itself
if parent.child >= len(node) {
break
}
for parent.child++; parent.child < len(node); parent.child++ {
if current := node[parent.child]; current != nil {
it.stack = append(it.stack, &nodeIteratorState{node: current, parent: ancestor, child: -1})
break
}
}
} else if node, ok := parent.node.(shortNode); ok {
// Short node, traverse the pointer singleton child, then the node itself
if parent.child >= 0 {
break
}
parent.child++
it.stack = append(it.stack, &nodeIteratorState{node: node.Val, parent: ancestor, child: -1})
} else if hash, ok := parent.node.(hashNode); ok {
// Hash node, resolve the hash child from the database, then the node itself
if parent.child >= 0 {
break
}
parent.child++
node, err := it.trie.resolveHash(hash, nil, nil)
if err != nil {
panic(err)
}
it.stack = append(it.stack, &nodeIteratorState{hash: common.BytesToHash(hash), node: node, parent: ancestor, child: -1})
} else {
break
}
}
}
// retrieve pulls and caches the current trie node the iterator is traversing.
// In case of a value node, the additional leaf blob is also populated with the
// data contents for external interpretation.
//
// The method returns whether there are any more data left for inspection.
func (it *NodeIterator) retrieve() bool {
// Clear out any previously set values
it.Hash, it.Node, it.Parent, it.Leaf, it.LeafBlob = common.Hash{}, nil, common.Hash{}, false, nil
// If the iteration's done, return no available data
if it.trie == nil {
return false
}
// Otherwise retrieve the current node and resolve leaf accessors
state := it.stack[len(it.stack)-1]
it.Hash, it.Node, it.Parent = state.hash, state.node, state.parent
if value, ok := it.Node.(valueNode); ok {
it.Leaf, it.LeafBlob = true, []byte(value)
}
return true
}
|