/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/*
 * Copyright 2002 Ximian, Inc. (www.ximian.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "camel-sasl-ntlm.h"

#include <ctype.h>
#include <string.h>

CamelServiceAuthType camel_sasl_ntlm_authtype = {
	N_("NTLM / SPA"),

	N_("This option will connect to a Windows-based server using "
	   "NTLM / Secure Password Authentication."),

	"NTLM",
	TRUE
};

static CamelSaslClass *parent_class = NULL;

static GByteArray *ntlm_challenge (CamelSasl *sasl, GByteArray *token, CamelException *ex);

static void
camel_sasl_ntlm_class_init (CamelSaslNTLMClass *camel_sasl_ntlm_class)
{
	CamelSaslClass *camel_sasl_class = CAMEL_SASL_CLASS (camel_sasl_ntlm_class);
	
	parent_class = CAMEL_SASL_CLASS (camel_type_get_global_classfuncs (camel_sasl_get_type ()));
	
	/* virtual method overload */
	camel_sasl_class->challenge = ntlm_challenge;
}

CamelType
camel_sasl_ntlm_get_type (void)
{
	static CamelType type = CAMEL_INVALID_TYPE;

	if (type == CAMEL_INVALID_TYPE) {
		type = camel_type_register (
			camel_sasl_get_type (), "CamelSaslNTLM",
			sizeof (CamelSaslNTLM),
			sizeof (CamelSaslNTLMClass),
			(CamelObjectClassInitFunc) camel_sasl_ntlm_class_init,
			NULL, NULL, NULL);
	}

	return type;
}

#define NTLM_REQUEST "NTLMSSP\x00\x01\x00\x00\x00\x06\x82\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00"

#define NTLM_CHALLENGE_NONCE_OFFSET      24
#define NTLM_CHALLENGE_DOMAIN_OFFSET     48
#define NTLM_CHALLENGE_DOMAIN_LEN_OFFSET 44

#define NTLM_RESPONSE_HEADER         "NTLMSSP\x00\x03\x00\x00\x00"
#define NTLM_RESPONSE_FLAGS          "\x82\x01"
#define NTLM_RESPONSE_BASE_SIZE      64
#define NTLM_RESPONSE_LM_RESP_OFFSET 12
#define NTLM_RESPONSE_NT_RESP_OFFSET 20
#define NTLM_RESPONSE_DOMAIN_OFFSET  28
#define NTLM_RESPONSE_USER_OFFSET    36
#define NTLM_RESPONSE_HOST_OFFSET    44
#define NTLM_RESPONSE_FLAGS_OFFSET   60

static void ntlm_calc_response   (const guchar key[21],
				  const guchar plaintext[8],
				  guchar results[24]);
static void ntlm_lanmanager_hash (const char *password, char hash[21]);
static void ntlm_nt_hash         (const char *password, char hash[21]);
static void ntlm_set_string      (GByteArray *ba, int offset,
				  const char *data, int len);

static GByteArray *
ntlm_challenge (CamelSasl *sasl, GByteArray *token, CamelException *ex)
{
	GByteArray *ret;
	guchar nonce[8], hash[21], lm_resp[24], nt_resp[24];

	ret = g_byte_array_new ();

	if (!token || !token->len) {
		g_byte_array_append (ret, NTLM_REQUEST,
				     sizeof (NTLM_REQUEST) - 1);
		return ret;
	}

	memcpy (nonce, token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8);
	ntlm_lanmanager_hash (sasl->service->url->passwd, hash);
	ntlm_calc_response (hash, nonce, lm_resp);
	ntlm_nt_hash (sasl->service->url->passwd, hash);
	ntlm_calc_response (hash, nonce, nt_resp);

	ret = g_byte_array_new ();
	g_byte_array_set_size (ret, NTLM_RESPONSE_BASE_SIZE);
	memset (ret->data, 0, NTLM_RESPONSE_BASE_SIZE);
	memcpy (ret->data, NTLM_RESPONSE_HEADER,
		sizeof (NTLM_RESPONSE_HEADER) - 1);
	memcpy (ret->data + NTLM_RESPONSE_FLAGS_OFFSET,
		NTLM_RESPONSE_FLAGS, sizeof (NTLM_RESPONSE_FLAGS) - 1);

	ntlm_set_string (ret, NTLM_RESPONSE_DOMAIN_OFFSET,
			 token->data + NTLM_CHALLENGE_DOMAIN_OFFSET,
			 atoi (token->data + NTLM_CHALLENGE_DOMAIN_LEN_OFFSET));
	ntlm_set_string (ret, NTLM_RESPONSE_USER_OFFSET,
			 sasl->service->url->user,
			 strlen (sasl->service->url->user));
	ntlm_set_string (ret, NTLM_RESPONSE_HOST_OFFSET,
			 "UNKNOWN", sizeof ("UNKNOWN") - 1);
	ntlm_set_string (ret, NTLM_RESPONSE_LM_RESP_OFFSET,
			 lm_resp, sizeof (lm_resp));
	ntlm_set_string (ret, NTLM_RESPONSE_NT_RESP_OFFSET,
			 nt_resp, sizeof (nt_resp));

	sasl->authenticated = TRUE;
	return ret;
}

/* MD4 */
static void md4sum                (const unsigned char *in, 
				   int                  nbytes, 
				   unsigned char        digest[16]);

/* DES */
typedef unsigned long DES_KS[16][2]; /* Single-key DES key schedule */

static void deskey                (DES_KS, unsigned char *, int);

static void des                   (DES_KS, unsigned char *);

static void setup_schedule        (const guchar *key_56, DES_KS ks);



#define LM_PASSWORD_MAGIC "\x4B\x47\x53\x21\x40\x23\x24\x25" \
                          "\x4B\x47\x53\x21\x40\x23\x24\x25" \
			  "\x00\x00\x00\x00\x00"

static void
ntlm_lanmanager_hash (const char *password, char hash[21])
{
	guchar lm_password [15];
	DES_KS ks;
	int i;

	for (i = 0; i < 14 && password [i]; i++)
		lm_password [i] = toupper ((unsigned char) password [i]);

	for (; i < 15; i++)
		lm_password [i] = '\0';

	memcpy (hash, LM_PASSWORD_MAGIC, 21);

	setup_schedule (lm_password, ks);
	des (ks, hash);

	setup_schedule (lm_password + 7, ks);
	des (ks, hash + 8);
}

static void
ntlm_nt_hash (const char *password, char hash[21])
{
	unsigned char *buf, *p;

	p = buf = g_malloc (strlen (password) * 2);

	while (*password) {
		*p++ = *password++;
		*p++ = '\0';
	}

	md4sum (buf, p - buf, hash);
	memset (hash + 16, 0, 5);

	g_free (buf);
}

static void
ntlm_set_string (GByteArray *ba, int offset, const char *data, int len)
{
	ba->data[offset    ] = ba->data[offset + 2] =  len       & 0xFF;
	ba->data[offset + 1] = ba->data[offset + 3] = (len >> 8) & 0xFF;
	ba->data[offset + 4] =  ba->len       & 0xFF;
	ba->data[offset + 5] = (ba->len >> 8) & 0xFF;
	g_byte_array_append (ba, data, len);
}


#define KEYBITS(k,s) \
        (((k[(s)/8] << ((s)%8)) & 0xFF) | (k[(s)/8+1] >> (8-(s)%8)))

/* DES utils */
/* Set up a key schedule based on a 56bit key */
static void
setup_schedule (const guchar *key_56, DES_KS ks)
{
	guchar key[8];
	int i, c, bit;

	for (i = 0; i < 8; i++) {
		key [i] = KEYBITS (key_56, i * 7);

		/* Fix parity */
		for (c = bit = 0; bit < 8; bit++)
			if (key [i] & (1 << bit))
				c++;
		if (!(c & 1))
			key [i] ^= 0x01;
	}

        deskey (ks, key, 0);
}

static void
ntlm_calc_response (const guchar key[21], const guchar plaintext[8],
		    guchar results[24])
{
        DES_KS ks;

	memcpy (results, plaintext, 8);
	memcpy (results + 8, plaintext, 8);
	memcpy (results + 16, plaintext, 8);

        setup_schedule (key, ks);
	des (ks, results);

        setup_schedule (key + 7, ks);
	des (ks, results + 8);

        setup_schedule (key + 14, ks);
        des (ks, results + 16);
}


/* 
 * MD4 encoder. (The one everyone else uses is not GPL-compatible;
 * this is a reimplementation from spec.) This doesn't need to be
 * efficient for our purposes, although it would be nice to fix
 * it to not malloc()...
 */

#define F(X,Y,Z) ( ((X)&(Y)) | ((~(X))&(Z)) )
#define G(X,Y,Z) ( ((X)&(Y)) | ((X)&(Z)) | ((Y)&(Z)) )
#define H(X,Y,Z) ( (X)^(Y)^(Z) )
#define ROT(val, n) ( ((val) << (n)) | ((val) >> (32 - (n))) )

static void
md4sum (const unsigned char *in, int nbytes, unsigned char digest[16])
{
	unsigned char *M;
	guint32 A, B, C, D, AA, BB, CC, DD, X[16];
	int pbytes, nbits = nbytes * 8, i, j;

	pbytes = (120 - (nbytes % 64)) % 64;
	M = alloca (nbytes + pbytes + 8);
	memcpy (M, in, nbytes);
	memset (M + nbytes, 0, pbytes + 8);
	M[nbytes] = 0x80;
	M[nbytes + pbytes] = nbits & 0xFF;
	M[nbytes + pbytes + 1] = (nbits >> 8) & 0xFF;
	M[nbytes + pbytes + 2] = (nbits >> 16) & 0xFF;
	M[nbytes + pbytes + 3] = (nbits >> 24) & 0xFF;

	A = 0x67452301;
	B = 0xEFCDAB89;
	C = 0x98BADCFE;
	D = 0x10325476;

	for (i = 0; i < nbytes + pbytes + 8; i += 64) {
		for (j = 0; j < 16; j++) {
			X[j] =  (M[i + j*4]) |
				(M[i + j*4 + 1] << 8) |
				(M[i + j*4 + 2] << 16) |
				(M[i + j*4 + 3] << 24);
		}

		AA = A;
		BB = B;
		CC = C;
		DD = D;

		A = ROT (A + F(B, C, D) + X[0], 3);
		D = ROT (D + F(A, B, C) + X[1], 7);
		C = ROT (C + F(D, A, B) + X[2], 11);
		B = ROT (B + F(C, D, A) + X[3], 19);
		A = ROT (A + F(B, C, D) + X[4], 3);
		D = ROT (D + F(A, B, C) + X[5], 7);
		C = ROT (C + F(D, A, B) + X[6], 11);
		B = ROT (B + F(C, D, A) + X[7], 19);
		A = ROT (A + F(B, C, D) + X[8], 3);
		D = ROT (D + F(A, B, C) + X[9], 7);
		C = ROT (C + F(D, A, B) + X[10], 11);
		B = ROT (B + F(C, D, A) + X[11], 19);
		A = ROT (A + F(B, C, D) + X[12], 3);
		D = ROT (D + F(A, B, C) + X[13], 7);
		C = ROT (C + F(D, A, B) + X[14], 11);
		B = ROT (B + F(C, D, A) + X[15], 19);

		A = ROT (A + G(B, C, D) + X[0] + 0x5A827999, 3);
		D = ROT (D + G(A, B, C) + X[4] + 0x5A827999, 5);
		C = ROT (C + G(D, A, B) + X[8] + 0x5A827999, 9);
		B = ROT (B + G(C, D, A) + X[12] + 0x5A827999, 13);
		A = ROT (A + G(B, C, D) + X[1] + 0x5A827999, 3);
		D = ROT (D + G(A, B, C) + X[5] + 0x5A827999, 5);
		C = ROT (C + G(D, A, B) + X[9] + 0x5A827999, 9);
		B = ROT (B + G(C, D, A) + X[13] + 0x5A827999, 13);
		A = ROT (A + G(B, C, D) + X[2] + 0x5A827999, 3);
		D = ROT (D + G(A, B, C) + X[6] + 0x5A827999, 5);
		C = ROT (C + G(D, A, B) + X[10] + 0x5A827999, 9);
		B = ROT (B + G(C, D, A) + X[14] + 0x5A827999, 13);
		A = ROT (A + G(B, C, D) + X[3] + 0x5A827999, 3);
		D = ROT (D + G(A, B, C) + X[7] + 0x5A827999, 5);
		C = ROT (C + G(D, A, B) + X[11] + 0x5A827999, 9);
		B = ROT (B + G(C, D, A) + X[15] + 0x5A827999, 13);

		A = ROT (A + H(B, C, D) + X[0] + 0x6ED9EBA1, 3);
		D = ROT (D + H(A, B, C) + X[8] + 0x6ED9EBA1, 9);
		C = ROT (C + H(D, A, B) + X[4] + 0x6ED9EBA1, 11);
		B = ROT (B + H(C, D, A) + X[12] + 0x6ED9EBA1, 15);
		A = ROT (A + H(B, C, D) + X[2] + 0x6ED9EBA1, 3);
		D = ROT (D + H(A, B, C) + X[10] + 0x6ED9EBA1, 9);
		C = ROT (C + H(D, A, B) + X[6] + 0x6ED9EBA1, 11);
		B = ROT (B + H(C, D, A) + X[14] + 0x6ED9EBA1, 15);
		A = ROT (A + H(B, C, D) + X[1] + 0x6ED9EBA1, 3);
		D = ROT (D + H(A, B, C) + X[9] + 0x6ED9EBA1, 9);
		C = ROT (C + H(D, A, B) + X[5] + 0x6ED9EBA1, 11);
		B = ROT (B + H(C, D, A) + X[13] + 0x6ED9EBA1, 15);
		A = ROT (A + H(B, C, D) + X[3] + 0x6ED9EBA1, 3);
		D = ROT (D + H(A, B, C) + X[11] + 0x6ED9EBA1, 9);
		C = ROT (C + H(D, A, B) + X[7] + 0x6ED9EBA1, 11);
		B = ROT (B + H(C, D, A) + X[15] + 0x6ED9EBA1, 15);

		A += AA;
		B += BB;
		C += CC;
		D += DD;
	}

	digest[0]  =  A        & 0xFF;
	digest[1]  = (A >>  8) & 0xFF;
	digest[2]  = (A >> 16) & 0xFF;
	digest[3]  = (A >> 24) & 0xFF;
	digest[4]  =  B        & 0xFF;
	digest[5]  = (B >>  8) & 0xFF;
	digest[6]  = (B >> 16) & 0xFF;
	digest[7]  = (B >> 24) & 0xFF;
	digest[8]  =  C        & 0xFF;
	digest[9]  = (C >>  8) & 0xFF;
	digest[10] = (C >> 16) & 0xFF;
	digest[11] = (C >> 24) & 0xFF;
	digest[12] =  D        & 0xFF;
	digest[13] = (D >>  8) & 0xFF;
	digest[14] = (D >> 16) & 0xFF;
	digest[15] = (D >> 24) & 0xFF;
}


/* Public domain DES implementation from Phil Karn */
static unsigned long Spbox[8][64] = {
	{ 0x01010400, 0x00000000, 0x00010000, 0x01010404,
	  0x01010004, 0x00010404, 0x00000004, 0x00010000,
	  0x00000400, 0x01010400, 0x01010404, 0x00000400,
	  0x01000404, 0x01010004, 0x01000000, 0x00000004,
	  0x00000404, 0x01000400, 0x01000400, 0x00010400,
	  0x00010400, 0x01010000, 0x01010000, 0x01000404,
	  0x00010004, 0x01000004, 0x01000004, 0x00010004,
	  0x00000000, 0x00000404, 0x00010404, 0x01000000,
	  0x00010000, 0x01010404, 0x00000004, 0x01010000,
	  0x01010400, 0x01000000, 0x01000000, 0x00000400,
	  0x01010004, 0x00010000, 0x00010400, 0x01000004,
	  0x00000400, 0x00000004, 0x01000404, 0x00010404,
	  0x01010404, 0x00010004, 0x01010000, 0x01000404,
	  0x01000004, 0x00000404, 0x00010404, 0x01010400,
	  0x00000404, 0x01000400, 0x01000400, 0x00000000,
	  0x00010004, 0x00010400, 0x00000000, 0x01010004 },
	{ 0x80108020, 0x80008000, 0x00008000, 0x00108020,
	  0x00100000, 0x00000020, 0x80100020, 0x80008020,
	  0x80000020, 0x80108020, 0x80108000, 0x80000000,
	  0x80008000, 0x00100000, 0x00000020, 0x80100020,
	  0x00108000, 0x00100020, 0x80008020, 0x00000000,
	  0x80000000, 0x00008000, 0x00108020, 0x80100000,
	  0x00100020, 0x80000020, 0x00000000, 0x00108000,
	  0x00008020, 0x80108000, 0x80100000, 0x00008020,
	  0x00000000, 0x00108020, 0x80100020, 0x00100000,
	  0x80008020, 0x80100000, 0x80108000, 0x00008000,
	  0x80100000, 0x80008000, 0x00000020, 0x80108020,
	  0x00108020, 0x00000020, 0x00008000, 0x80000000,
	  0x00008020, 0x80108000, 0x00100000, 0x80000020,
	  0x00100020, 0x80008020, 0x80000020, 0x00100020,
	  0x00108000, 0x00000000, 0x80008000, 0x00008020,
	  0x80000000, 0x80100020, 0x80108020, 0x00108000 },
	{ 0x00000208, 0x08020200, 0x00000000, 0x08020008,
	  0x08000200, 0x00000000, 0x00020208, 0x08000200,
	  0x00020008, 0x08000008, 0x08000008, 0x00020000,
	  0x08020208, 0x00020008, 0x08020000, 0x00000208,
	  0x08000000, 0x00000008, 0x08020200, 0x00000200,
	  0x00020200, 0x08020000, 0x08020008, 0x00020208,
	  0x08000208, 0x00020200, 0x00020000, 0x08000208,
	  0x00000008, 0x08020208, 0x00000200, 0x08000000,
	  0x08020200, 0x08000000, 0x00020008, 0x00000208,
	  0x00020000, 0x08020200, 0x08000200, 0x00000000,
	  0x00000200, 0x00020008, 0x08020208, 0x08000200,
	  0x08000008, 0x00000200, 0x00000000, 0x08020008,
	  0x08000208, 0x00020000, 0x08000000, 0x08020208,
	  0x00000008, 0x00020208, 0x00020200, 0x08000008,
	  0x08020000, 0x08000208, 0x00000208, 0x08020000,
	  0x00020208, 0x00000008, 0x08020008, 0x00020200 },
	{ 0x00802001, 0x00002081, 0x00002081, 0x00000080,
	  0x00802080, 0x00800081, 0x00800001, 0x00002001,
	  0x00000000, 0x00802000, 0x00802000, 0x00802081,
	  0x00000081, 0x00000000, 0x00800080, 0x00800001,
	  0x00000001, 0x00002000, 0x00800000, 0x00802001,
	  0x00000080, 0x00800000, 0x00002001, 0x00002080,
	  0x00800081, 0x00000001, 0x00002080, 0x00800080,
	  0x00002000, 0x00802080, 0x00802081, 0x00000081,
	  0x00800080, 0x00800001, 0x00802000, 0x00802081,
	  0x00000081, 0x00000000, 0x00000000, 0x00802000,
	  0x00002080, 0x00800080, 0x00800081, 0x00000001,
	  0x00802001, 0x00002081, 0x00002081, 0x00000080,
	  0x00802081, 0x00000081, 0x00000001, 0x00002000,
	  0x00800001, 0x00002001, 0x00802080, 0x00800081,
	  0x00002001, 0x00002080, 0x00800000, 0x00802001,
	  0x00000080, 0x00800000, 0x00002000, 0x00802080 },
	{ 0x00000100, 0x02080100, 0x02080000, 0x42000100,
	  0x00080000, 0x00000100, 0x40000000, 0x02080000,
	  0x40080100, 0x00080000, 0x02000100, 0x40080100,
	  0x42000100, 0x42080000, 0x00080100, 0x40000000,
	  0x02000000, 0x40080000, 0x40080000, 0x00000000,
	  0x40000100, 0x42080100, 0x42080100, 0x02000100,
	  0x42080000, 0x40000100, 0x00000000, 0x42000000,
	  0x02080100, 0x02000000, 0x42000000, 0x00080100,
	  0x00080000, 0x42000100, 0x00000100, 0x02000000,
	  0x40000000, 0x02080000, 0x42000100, 0x40080100,
	  0x02000100, 0x40000000, 0x42080000, 0x02080100,
	  0x40080100, 0x00000100, 0x02000000, 0x42080000,
	  0x42080100, 0x00080100, 0x42000000, 0x42080100,
	  0x02080000, 0x00000000, 0x40080000, 0x42000000,
	  0x00080100, 0x02000100, 0x40000100, 0x00080000,
	  0x00000000, 0x40080000, 0x02080100, 0x40000100 },
	{ 0x20000010, 0x20400000, 0x00004000, 0x20404010,
	  0x20400000, 0x00000010, 0x20404010, 0x00400000,
	  0x20004000, 0x00404010, 0x00400000, 0x20000010,
	  0x00400010, 0x20004000, 0x20000000, 0x00004010,
	  0x00000000, 0x00400010, 0x20004010, 0x00004000,
	  0x00404000, 0x20004010, 0x00000010, 0x20400010,
	  0x20400010, 0x00000000, 0x00404010, 0x20404000,
	  0x00004010, 0x00404000, 0x20404000, 0x20000000,
	  0x20004000, 0x00000010, 0x20400010, 0x00404000,
	  0x20404010, 0x00400000, 0x00004010, 0x20000010,
	  0x00400000, 0x20004000, 0x20000000, 0x00004010,
	  0x20000010, 0x20404010, 0x00404000, 0x20400000,
	  0x00404010, 0x20404000, 0x00000000, 0x20400010,
	  0x00000010, 0x00004000, 0x20400000, 0x00404010,
	  0x00004000, 0x00400010, 0x20004010, 0x00000000,
	  0x20404000, 0x20000000, 0x00400010, 0x20004010 },
	{ 0x00200000, 0x04200002, 0x04000802, 0x00000000,
	  0x00000800, 0x04000802, 0x00200802, 0x04200800,
	  0x04200802, 0x00200000, 0x00000000, 0x04000002,
	  0x00000002, 0x04000000, 0x04200002, 0x00000802,
	  0x04000800, 0x00200802, 0x00200002, 0x04000800,
	  0x04000002, 0x04200000, 0x04200800, 0x00200002,
	  0x04200000, 0x00000800, 0x00000802, 0x04200802,
	  0x00200800, 0x00000002, 0x04000000, 0x00200800,
	  0x04000000, 0x00200800, 0x00200000, 0x04000802,
	  0x04000802, 0x04200002, 0x04200002, 0x00000002,
	  0x00200002, 0x04000000, 0x04000800, 0x00200000,
	  0x04200800, 0x00000802, 0x00200802, 0x04200800,
	  0x00000802, 0x04000002, 0x04200802, 0x04200000,
	  0x00200800, 0x00000000, 0x00000002, 0x04200802,
	  0x00000000, 0x00200802, 0x04200000, 0x00000800,
	  0x04000002, 0x04000800, 0x00000800, 0x00200002 },
	{ 0x10001040, 0x00001000, 0x00040000, 0x10041040,
	  0x10000000, 0x10001040, 0x00000040, 0x10000000,
	  0x00040040, 0x10040000, 0x10041040, 0x00041000,
	  0x10041000, 0x00041040, 0x00001000, 0x00000040,
	  0x10040000, 0x10000040, 0x10001000, 0x00001040,
	  0x00041000, 0x00040040, 0x10040040, 0x10041000,
	  0x00001040, 0x00000000, 0x00000000, 0x10040040,
	  0x10000040, 0x10001000, 0x00041040, 0x00040000,
	  0x00041040, 0x00040000, 0x10041000, 0x00001000,
	  0x00000040, 0x10040040, 0x00001000, 0x00041040,
	  0x10001000, 0x00000040, 0x10000040, 0x10040000,
	  0x10040040, 0x10000000, 0x00040000, 0x10001040,
	  0x00000000, 0x10041040, 0x00040040, 0x10000040,
	  0x10040000, 0x10001000, 0x10001040, 0x00000000,
	  0x10041040, 0x00041000, 0x00041000, 0x00001040,
	  0x00001040, 0x00040040, 0x10000000, 0x10041000 }
};

#undef F
#define	F(l,r,key){\
	work = ((r >> 4) | (r << 28)) ^ key[0];\
	l ^= Spbox[6][work & 0x3f];\
	l ^= Spbox[4][(work >> 8) & 0x3f];\
	l ^= Spbox[2][(work >> 16) & 0x3f];\
	l ^= Spbox[0][(work >> 24) & 0x3f];\
	work = r ^ key[1];\
	l ^= Spbox[7][work & 0x3f];\
	l ^= Spbox[5][(work >> 8) & 0x3f];\
	l ^= Spbox[3][(work >> 16) & 0x3f];\
	l ^= Spbox[1][(work >> 24) & 0x3f];\
}
/* Encrypt or decrypt a block of data in ECB mode */
static void
des(ks,block)
unsigned long ks[16][2];	/* Key schedule */
unsigned char block[8];		/* Data block */
{
	unsigned long left,right,work;
	
	/* Read input block and place in left/right in big-endian order */
	left = ((unsigned long)block[0] << 24)
	 | ((unsigned long)block[1] << 16)
	 | ((unsigned long)block[2] << 8)
	 | (unsigned long)block[3];
	right = ((unsigned long)block[4] << 24)
	 | ((unsigned long)block[5] << 16)
	 | ((unsigned long)block[6] << 8)
	 | (unsigned long)block[7];

	/* Hoey's clever initial permutation algorithm, from Outerbridge
	 * (see Schneier p 478)	
	 *
	 * The convention here is the same as Outerbridge: rotate each
	 * register left by 1 bit, i.e., so that "left" contains permuted
	 * input bits 2, 3, 4, ... 1 and "right" contains 33, 34, 35, ... 32	
	 * (using origin-1 numbering as in the FIPS). This allows us to avoid
	 * one of the two rotates that would otherwise be required in each of
	 * the 16 rounds.
	 */
	work = ((left >> 4) ^ right) & 0x0f0f0f0f;
	right ^= work;
	left ^= work << 4;
	work = ((left >> 16) ^ right) & 0xffff;
	right ^= work;
	left ^= work << 16;
	work = ((right >> 2) ^ left) & 0x33333333;
	left ^= work;
	right ^= (work << 2);
	work = ((right >> 8) ^ left) & 0xff00ff;
	left ^= work;
	right ^= (work << 8);
	right = (right << 1) | (right >> 31);
	work = (left ^ right) & 0xaaaaaaaa;
	left ^= work;
	right ^= work;
	left = (left << 1) | (left >> 31);

	/* Now do the 16 rounds */
	F(left,right,ks[0]);
	F(right,left,ks[1]);
	F(left,right,ks[2]);
	F(right,left,ks[3]);
	F(left,right,ks[4]);
	F(right,left,ks[5]);
	F(left,right,ks[6]);
	F(right,left,ks[7]);
	F(left,right,ks[8]);
	F(right,left,ks[9]);
	F(left,right,ks[10]);
	F(right,left,ks[11]);
	F(left,right,ks[12]);
	F(right,left,ks[13]);
	F(left,right,ks[14]);
	F(right,left,ks[15]);

	/* Inverse permutation, also from Hoey via Outerbridge and Schneier */
	right = (right << 31) | (right >> 1);
	work = (left ^ right) & 0xaaaaaaaa;
	left ^= work;
	right ^= work;
	left = (left >> 1) | (left  << 31);
	work = ((left >> 8) ^ right) & 0xff00ff;
	right ^= work;
	left ^= work << 8;
	work = ((left >> 2) ^ right) & 0x33333333;
	right ^= work;
	left ^= work << 2;
	work = ((right >> 16) ^ left) & 0xffff;
	left ^= work;
	right ^= work << 16;
	work = ((right >> 4) ^ left) & 0x0f0f0f0f;
	left ^= work;
	right ^= work << 4;

	/* Put the block back into the user's buffer with final swap */
	block[0] = right >> 24;
	block[1] = right >> 16;
	block[2] = right >> 8;
	block[3] = right;
	block[4] = left >> 24;
	block[5] = left >> 16;
	block[6] = left >> 8;
	block[7] = left;
}

/* Key schedule-related tables from FIPS-46 */

/* permuted choice table (key) */
static unsigned char pc1[] = {
	57, 49, 41, 33, 25, 17,  9,
	 1, 58, 50, 42, 34, 26, 18,
	10,  2, 59, 51, 43, 35, 27,
	19, 11,  3, 60, 52, 44, 36,

	63, 55, 47, 39, 31, 23, 15,
	 7, 62, 54, 46, 38, 30, 22,
	14,  6, 61, 53, 45, 37, 29,
	21, 13,  5, 28, 20, 12,  4
};

/* number left rotations of pc1 */
static unsigned char totrot[] = {
	1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};

/* permuted choice key (table) */
static unsigned char pc2[] = {
	14, 17, 11, 24,  1,  5,
	 3, 28, 15,  6, 21, 10,
	23, 19, 12,  4, 26,  8,
	16,  7, 27, 20, 13,  2,
	41, 52, 31, 37, 47, 55,
	30, 40, 51, 45, 33, 48,
	44, 49, 39, 56, 34, 53,
	46, 42, 50, 36, 29, 32
};

/* End of DES-defined tables */


/* bit 0 is left-most in byte */
static int bytebit[] = {
	0200,0100,040,020,010,04,02,01
};


/* Generate key schedule for encryption or decryption
 * depending on the value of "decrypt"
 */
static void
deskey(k,key,decrypt)
DES_KS k;			/* Key schedule array */
unsigned char *key;		/* 64 bits (will use only 56) */
int decrypt;			/* 0 = encrypt, 1 = decrypt */
{
	unsigned char pc1m[56];		/* place to modify pc1 into */
	unsigned char pcr[56];		/* place to rotate pc1 into */
	register int i,j,l;
	int m;
	unsigned char ks[8];

	for (j=0; j<56; j++) {		/* convert pc1 to bits of key */
		l=pc1[j]-1;		/* integer bit location	 */
		m = l & 07;		/* find bit		 */
		pc1m[j]=(key[l>>3] &	/* find which key byte l is in */
			bytebit[m])	/* and which bit of that byte */
			? 1 : 0;	/* and store 1-bit result */
	}
	for (i=0; i<16; i++) {		/* key chunk for each iteration */
		memset(ks,0,sizeof(ks));	/* Clear key schedule */
		for (j=0; j<56; j++)	/* rotate pc1 the right amount */
			pcr[j] = pc1m[(l=j+totrot[decrypt? 15-i : i])<(j<28? 28 : 56) ? l: l-28];
			/* rotate left and right halves independently */
		for (j=0; j<48; j++){	/* select bits individually */
			/* check bit that goes to ks[j] */
			if (pcr[pc2[j]-1]){
				/* mask it in if it's there */
				l= j % 6;
				ks[j/6] |= bytebit[l] >> 2;
			}
		}
		/* Now convert to packed odd/even interleaved form */
		k[i][0] = ((long)ks[0] << 24)
		 | ((long)ks[2] << 16)
		 | ((long)ks[4] << 8)
		 | ((long)ks[6]);
		k[i][1] = ((long)ks[1] << 24)
		 | ((long)ks[3] << 16)
		 | ((long)ks[5] << 8)
		 | ((long)ks[7]);
	}
}