aboutsummaryrefslogtreecommitdiffstats
path: root/doc/html/formula.repository
diff options
context:
space:
mode:
authorcathook <b01902109@csie.ntu.edu.tw>2014-09-24 13:37:42 +0800
committercathook <b01902109@csie.ntu.edu.tw>2014-09-29 16:55:57 +0800
commit8b76fbb408f8eedab24195655c45c891af01eaab (patch)
tree414d7fc87885cb77e181a3ab99e334b837621036 /doc/html/formula.repository
parentef9af0d577c3a6b5d11fdeed7a9149d09973171b (diff)
downloadmeow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.gz
meow-8b76fbb408f8eedab24195655c45c891af01eaab.tar.zst
meow-8b76fbb408f8eedab24195655c45c891af01eaab.zip
Big change, detail see README.
Diffstat (limited to 'doc/html/formula.repository')
-rw-r--r--doc/html/formula.repository33
1 files changed, 0 insertions, 33 deletions
diff --git a/doc/html/formula.repository b/doc/html/formula.repository
deleted file mode 100644
index 7bee4b5..0000000
--- a/doc/html/formula.repository
+++ /dev/null
@@ -1,33 +0,0 @@
-\form#0:$ (x ,y ,z ) $
-\form#1:$ (x',y',z') $
-\form#2:$ \vec{\theta}=(\theta_x,\theta_y,\theta_z) $
-\form#3:\[ \left[ \begin{array}{c} x' \\ y' \\ z' \\ \end{array} \right] = \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \]
-\form#4:$ \phi $
-\form#5:$ \vec{\theta} $
-\form#6:$ \phi = \frac{\left|\vec{\theta}\right|}{2} = \frac{1}{2}\sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2} $
-\form#7:$ \vec{n} $
-\form#8:$ \vec{n} = (n_x,n_y,n_z) = \vec{\theta} / 2\phi $
-\form#9:\[ \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \]
-\form#10:\[ \left[ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ \end{array} \right] \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \]
-\form#11:\[ \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \\ \end{array} \right] \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \]
-\form#12:\[ \left[ \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \left[ \begin{array}{ccc} 2(n_x^2 - 1) \sin^2\phi + 1 & 2n_x n_y \sin^2\phi - 2n_z\cos \phi\sin \phi & 2n_x n_z \sin^2\phi + 2n_y\cos \phi\sin \phi \\ 2n_y n_x \sin^2\phi + 2n_z\cos \phi\sin \phi & 2(n_y^2 - 1) \sin^2\phi + 1 & 2n_y n_z \sin^2\phi - 2n_x\cos \phi\sin \phi \\ 2n_z n_x \sin^2\phi - 2n_y\cos \phi\sin \phi & 2n_z n_y \sin^2\phi + 2n_x\cos \phi\sin \phi & 2(n_z^2 - 1) \sin^2\phi + 1 \\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right] \]
-\form#13:$ (x,y,z) $
-\form#14:$ \vec{n}, \phi $
-\form#15:$ N $
-\form#16:$ p_0 $
-\form#17:$ P $
-\form#18:$ M $
-\form#19:\[ \begin{aligned} & (1 - p_0^N)^M \leq(1 - P) \\ \Rightarrow & M \log(1 - p_0^N) \leq \log(1 - P) \\ \Rightarrow & M \geq \frac{\log(1 - p)}{\log(1 - p_0^N)},~~ \because (1-p_0^N<1 \Rightarrow \log(1-p_0^N)<0) \end{aligned} \]
-\form#20:$ M = \lceil \frac{\log(1 - P)}{\log(1 - p_0^N)} \rceil $
-\form#21:$ R $
-\form#22:\[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ . \\ . \\ . \\ x_N \\ \end{array} \right] \stackrel{transformate}{\rightarrow} \left[ \begin{array}{c} \frac{x_1 \times R}{L} \\ \frac{x_2 \times R}{L} \\ \frac{x_3 \times R}{L} \\ . \\ . \\ . \\ \frac{x_N \times R}{L} \\ \end{array} \right] \\ \]
-\form#23:$ L=\sqrt{x_1^2 + x_2^2 + x_3^2 + ... + x_N^2 } $
-\form#24:$ L $
-\form#25:$ f $
-\form#26:\[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ . \\ . \\ . \\ x_N \\ \end{array} \right] \stackrel{transformate}{\rightarrow} \left[ \begin{array}{c} \frac{-x_1 \times f}{x_N} \\ \frac{-x_2 \times f}{x_N} \\ \frac{-x_3 \times f}{x_N} \\ . \\ . \\ . \\ -f \\ \end{array} \right] \\ \]
-\form#27:$ x_N = -f $
-\form#28:$ L=\sqrt{x_1^2+x_2^2+...+x_N^2} $
-\form#29:\[ \frac{R}{L^3} \times \left[ \begin{array}{ccccc} L^2-x_1^2 & -x_1x_2 & -x_1x_3 & ... & -x_1x_N \\ -x_2x_1 & L^2-x_2^2 & -x_2x_3 & ... & -x_2x_N \\ -x_3x_1 & -x_3x_2 & L^2-x_3^2 & ... & -x_3x_N \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ -x_Nx_1 & -x_Nx_2 & -x_Nx_3 & ... & L^2-x_N^2 \\ \end{array} \right] \]
-\form#30:\[ R \times \left[ \begin{array}{c} \frac{x_1}{L} \\ \frac{x_2}{L} \\ \frac{x_3}{L} \\ . \\ . \\ . \\ \frac{x_N}{L} \\ \end{array} \right] \]
-\form#31:\[ f \times \left[ \begin{array}{ccccc} \frac{-1}{x_N} & 0 & 0 & ... & \frac{1}{x_N^2} \\ 0 & \frac{-1}{x_N} & 0 & ... & \frac{1}{x_N^2} \\ 0 & 0 & \frac{-1}{x_N} & ... & \frac{1}{x_N^2} \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ 0 & 0 & 0 & ... & 0 \\ \end{array} \right] \]
-\form#32:\[ \left[ \begin{array}{c} \frac{-x_1}{x_N} \\ \frac{-x_2}{x_N} \\ \frac{-x_3}{x_N} \\ . \\ . \\ . \\ -1 \\ \end{array} \right] \]