aboutsummaryrefslogtreecommitdiffstats
path: root/include/mcl
diff options
context:
space:
mode:
authorMITSUNARI Shigeo <herumi@nifty.com>2018-03-29 13:53:07 +0800
committerMITSUNARI Shigeo <herumi@nifty.com>2018-03-29 13:53:07 +0800
commit77c69a6dec624c341e1845f41ad57c89c25d6fa6 (patch)
tree571627c2e206967f3476c8219f618671d41ae169 /include/mcl
parent05ba3e50ec71fc63f22a74b5cfa3df071514c5ab (diff)
downloadtangerine-mcl-77c69a6dec624c341e1845f41ad57c89c25d6fa6.tar.gz
tangerine-mcl-77c69a6dec624c341e1845f41ad57c89c25d6fa6.tar.zst
tangerine-mcl-77c69a6dec624c341e1845f41ad57c89c25d6fa6.zip
rename mul_014 and mul_025
Diffstat (limited to 'include/mcl')
-rw-r--r--include/mcl/pairing_util.hpp996
1 files changed, 979 insertions, 17 deletions
diff --git a/include/mcl/pairing_util.hpp b/include/mcl/pairing_util.hpp
index 16c45b1..04cdfa9 100644
--- a/include/mcl/pairing_util.hpp
+++ b/include/mcl/pairing_util.hpp
@@ -209,23 +209,6 @@ void updateLine(Fp6& l, const G1& P)
l.c.b *= P.x;
}
-template<class Fp12, class Fp6>
-void convertFp6toFp12(Fp12& y, const Fp6& x)
-{
- y.clear();
-#ifdef MCL_MTYPE
- // (a, b, c) -> (a, c, 0, 0, b, 0)
- y.a.a = x.a;
- y.a.b = x.c;
- y.b.b = x.b;
-#else
- // (a, b, c) -> (b, 0, 0, c, a, 0)
- y.a.a = x.b;
- y.b.a = x.c;
- y.b.b = x.a;
-#endif
-}
-
template<class Param, class Fp2>
void mul_b_div_xi(const Param& param, Fp2& y, const Fp2& x)
{
@@ -325,6 +308,985 @@ typename G2::Fp HaveFrobenius<G2>::g2;
template<class G2>
typename G2::Fp HaveFrobenius<G2>::g3;
+template<class Fp, class Param>
+struct BasePairingT {
+ typedef mcl::Fp2T<Fp> Fp2;
+ typedef mcl::Fp6T<Fp> Fp6;
+ typedef mcl::Fp12T<Fp> Fp12;
+ typedef mcl::EcT<Fp> G1;
+ typedef mcl::EcT<Fp2> G2;
+ typedef util::HaveFrobenius<G2> G2withF;
+ typedef mcl::FpDblT<Fp> FpDbl;
+ typedef mcl::Fp2DblT<Fp> Fp2Dbl;
+ static Param param;
+
+ struct Compress {
+ Fp12& z_;
+ Fp2& g1_;
+ Fp2& g2_;
+ Fp2& g3_;
+ Fp2& g4_;
+ Fp2& g5_;
+ // z is output area
+ Compress(Fp12& z, const Fp12& x)
+ : z_(z)
+ , g1_(z.getFp2()[4])
+ , g2_(z.getFp2()[3])
+ , g3_(z.getFp2()[2])
+ , g4_(z.getFp2()[1])
+ , g5_(z.getFp2()[5])
+ {
+ g2_ = x.getFp2()[3];
+ g3_ = x.getFp2()[2];
+ g4_ = x.getFp2()[1];
+ g5_ = x.getFp2()[5];
+ }
+ Compress(Fp12& z, const Compress& c)
+ : z_(z)
+ , g1_(z.getFp2()[4])
+ , g2_(z.getFp2()[3])
+ , g3_(z.getFp2()[2])
+ , g4_(z.getFp2()[1])
+ , g5_(z.getFp2()[5])
+ {
+ g2_ = c.g2_;
+ g3_ = c.g3_;
+ g4_ = c.g4_;
+ g5_ = c.g5_;
+ }
+ void decompressBeforeInv(Fp2& nume, Fp2& denomi) const
+ {
+ assert(&nume != &denomi);
+
+ if (g2_.isZero()) {
+ Fp2::add(nume, g4_, g4_);
+ nume *= g5_;
+ denomi = g3_;
+ } else {
+ Fp2 t;
+ Fp2::sqr(nume, g5_);
+ Fp2::mul_xi(denomi, nume);
+ Fp2::sqr(nume, g4_);
+ Fp2::sub(t, nume, g3_);
+ t += t;
+ t += nume;
+ Fp2::add(nume, denomi, t);
+ Fp2::divBy4(nume, nume);
+ denomi = g2_;
+ }
+ }
+
+ // output to z
+ void decompressAfterInv()
+ {
+ Fp2& g0 = z_.getFp2()[0];
+ Fp2 t0, t1;
+ // Compute g0.
+ Fp2::sqr(t0, g1_);
+ Fp2::mul(t1, g3_, g4_);
+ t0 -= t1;
+ t0 += t0;
+ t0 -= t1;
+ Fp2::mul(t1, g2_, g5_);
+ t0 += t1;
+ Fp2::mul_xi(g0, t0);
+ g0.a += Fp::one();
+ }
+
+ public:
+ void decompress() // for test
+ {
+ Fp2 nume, denomi;
+ decompressBeforeInv(nume, denomi);
+ Fp2::inv(denomi, denomi);
+ g1_ = nume * denomi; // g1 is recoverd.
+ decompressAfterInv();
+ }
+ /*
+ 2275clk * 186 = 423Kclk QQQ
+ */
+ static void squareC(Compress& z)
+ {
+ Fp2 t0, t1, t2;
+ Fp2Dbl T0, T1, T2, T3;
+ Fp2Dbl::sqrPre(T0, z.g4_);
+ Fp2Dbl::sqrPre(T1, z.g5_);
+ Fp2Dbl::mul_xi(T2, T1);
+ T2 += T0;
+ Fp2Dbl::mod(t2, T2);
+ Fp2::add(t0, z.g4_, z.g5_);
+ Fp2Dbl::sqrPre(T2, t0);
+ T0 += T1;
+ T2 -= T0;
+ Fp2Dbl::mod(t0, T2);
+ Fp2::add(t1, z.g2_, z.g3_);
+ Fp2Dbl::sqrPre(T3, t1);
+ Fp2Dbl::sqrPre(T2, z.g2_);
+ Fp2::mul_xi(t1, t0);
+ z.g2_ += t1;
+ z.g2_ += z.g2_;
+ z.g2_ += t1;
+ Fp2::sub(t1, t2, z.g3_);
+ t1 += t1;
+ Fp2Dbl::sqrPre(T1, z.g3_);
+ Fp2::add(z.g3_, t1, t2);
+ Fp2Dbl::mul_xi(T0, T1);
+ T0 += T2;
+ Fp2Dbl::mod(t0, T0);
+ Fp2::sub(z.g4_, t0, z.g4_);
+ z.g4_ += z.g4_;
+ z.g4_ += t0;
+ Fp2Dbl::addPre(T2, T2, T1);
+ T3 -= T2;
+ Fp2Dbl::mod(t0, T3);
+ z.g5_ += t0;
+ z.g5_ += z.g5_;
+ z.g5_ += t0;
+ }
+ static void square_n(Compress& z, int n)
+ {
+ for (int i = 0; i < n; i++) {
+ squareC(z);
+ }
+ }
+ /*
+ Exponentiation over compression for:
+ z = x^Param::z.abs()
+ */
+ static void fixed_power(Fp12& z, const Fp12& x)
+ {
+ if (x.isOne()) {
+ z = 1;
+ return;
+ }
+ assert(param.isCurveFp254BNb);
+ Fp12 x_org = x;
+ Fp12 d62;
+ Fp2 c55nume, c55denomi, c62nume, c62denomi;
+ Compress c55(z, x);
+ Compress::square_n(c55, 55);
+ c55.decompressBeforeInv(c55nume, c55denomi);
+ Compress c62(d62, c55);
+ Compress::square_n(c62, 62 - 55);
+ c62.decompressBeforeInv(c62nume, c62denomi);
+ Fp2 acc;
+ Fp2::mul(acc, c55denomi, c62denomi);
+ Fp2::inv(acc, acc);
+ Fp2 t;
+ Fp2::mul(t, acc, c62denomi);
+ Fp2::mul(c55.g1_, c55nume, t);
+ c55.decompressAfterInv();
+ Fp2::mul(t, acc, c55denomi);
+ Fp2::mul(c62.g1_, c62nume, t);
+ c62.decompressAfterInv();
+ z *= x_org;
+ z *= d62;
+ }
+ };
+ /*
+ y = x^z if z > 0
+ = unitaryInv(x^(-z)) if z < 0
+ */
+ static void pow_z(Fp12& y, const Fp12& x)
+ {
+#if 1
+ if (param.isCurveFp254BNb) {
+ Compress::fixed_power(y, x);
+ } else {
+ Fp12 orgX = x;
+ y = x;
+ Fp12 conj;
+ conj.a = x.a;
+ Fp6::neg(conj.b, x.b);
+ for (size_t i = 1; i < param.zReplTbl.size(); i++) {
+ fasterSqr(y, y);
+ if (param.zReplTbl[i] > 0) {
+ y *= orgX;
+ } else if (param.zReplTbl[i] < 0) {
+ y *= conj;
+ }
+ }
+ }
+#else
+ Fp12::pow(y, x, param.abs_z);
+#endif
+ if (param.isNegative) {
+ Fp12::unitaryInv(y, y);
+ }
+ }
+ static void dblLineWithoutP(Fp6& l, G2& Q)
+ {
+ Fp2 t0, t1, t2, t3, t4, t5;
+ Fp2Dbl T0, T1;
+ Fp2::sqr(t0, Q.z);
+ Fp2::mul(t4, Q.x, Q.y);
+ Fp2::sqr(t1, Q.y);
+ Fp2::add(t3, t0, t0);
+ Fp2::divBy2(t4, t4);
+ Fp2::add(t5, t0, t1);
+ t0 += t3;
+#if 0
+ Fp2::mul_xi(t2, t0);
+#else
+ util::mul_b_div_xi(param, t2, t0);
+#endif
+ Fp2::sqr(t0, Q.x);
+ Fp2::add(t3, t2, t2);
+ t3 += t2;
+ Fp2::sub(Q.x, t1, t3);
+ t3 += t1;
+ Q.x *= t4;
+ Fp2::divBy2(t3, t3);
+ Fp2Dbl::sqrPre(T0, t3);
+ Fp2Dbl::sqrPre(T1, t2);
+ Fp2Dbl::sub(T0, T0, T1);
+ Fp2Dbl::add(T1, T1, T1);
+ Fp2Dbl::sub(T0, T0, T1);
+ Fp2::add(t3, Q.y, Q.z);
+ Fp2Dbl::mod(Q.y, T0);
+ Fp2::sqr(t3, t3);
+ t3 -= t5;
+ Fp2::mul(Q.z, t1, t3);
+ Fp2::sub(l.a, t2, t1);
+ l.c = t0;
+ l.b = t3;
+ }
+ static void addLineWithoutP(Fp6& l, G2& R, const G2& Q)
+ {
+ Fp2 t1, t2, t3, t4;
+ Fp2Dbl T1, T2;
+ Fp2::mul(t1, R.z, Q.x);
+ Fp2::mul(t2, R.z, Q.y);
+ Fp2::sub(t1, R.x, t1);
+ Fp2::sub(t2, R.y, t2);
+ Fp2::sqr(t3, t1);
+ Fp2::mul(R.x, t3, R.x);
+ Fp2::sqr(t4, t2);
+ t3 *= t1;
+ t4 *= R.z;
+ t4 += t3;
+ t4 -= R.x;
+ t4 -= R.x;
+ R.x -= t4;
+ Fp2Dbl::mulPre(T1, t2, R.x);
+ Fp2Dbl::mulPre(T2, t3, R.y);
+ Fp2Dbl::sub(T2, T1, T2);
+ Fp2Dbl::mod(R.y, T2);
+ Fp2::mul(R.x, t1, t4);
+ Fp2::mul(R.z, t3, R.z);
+ Fp2::neg(l.c, t2);
+ Fp2Dbl::mulPre(T1, t2, Q.x);
+ Fp2Dbl::mulPre(T2, t1, Q.y);
+ Fp2Dbl::sub(T1, T1, T2);
+ l.b = t1;
+ Fp2Dbl::mod(l.a, T1);
+ }
+ static void dblLine(Fp6& l, G2& Q, const G1& P)
+ {
+ dblLineWithoutP(l, Q);
+ util::updateLine(l, P);
+ }
+ static void addLine(Fp6& l, G2& R, const G2& Q, const G1& P)
+ {
+ addLineWithoutP(l, R, Q);
+ util::updateLine(l, P);
+ }
+ static void mulFp6cb_by_G1xy(Fp6& y, const Fp6& x, const G1& P)
+ {
+ assert(P.isNormalized());
+ if (&y != &x) y.a = x.a;
+ Fp2::mulFp(y.c, x.c, P.x);
+ Fp2::mulFp(y.b, x.b, P.y);
+ }
+
+ /*
+ x = a + bv + cv^2
+ y = (y0, y4, y2) -> (y0, 0, y2, 0, y4, 0)
+ z = xy = (a + bv + cv^2)(d + ev)
+ = (ad + ce xi) + ((a + b)(d + e) - ad - be)v + (be + cd)v^2
+ */
+ static void Fp6mul_01(Fp6& z, const Fp6& x, const Fp2& d, const Fp2& e)
+ {
+ const Fp2& a = x.a;
+ const Fp2& b = x.b;
+ const Fp2& c = x.c;
+ Fp2 t0, t1;
+ Fp2Dbl AD, CE, BE, CD, T;
+ Fp2Dbl::mulPre(AD, a, d);
+ Fp2Dbl::mulPre(CE, c, e);
+ Fp2Dbl::mulPre(BE, b, e);
+ Fp2Dbl::mulPre(CD, c, d);
+ Fp2::add(t0, a, b);
+ Fp2::add(t1, d, e);
+ Fp2Dbl::mulPre(T, t0, t1);
+ T -= AD;
+ T -= BE;
+ Fp2Dbl::mod(z.b, T);
+ Fp2Dbl::mul_xi(CE, CE);
+ AD += CE;
+ Fp2Dbl::mod(z.a, AD);
+ BE += CD;
+ Fp2Dbl::mod(z.c, BE);
+ }
+ /*
+ input
+ z = (z0 + z1v + z2v^2) + (z3 + z4v + z5v^2)w = Z0 + Z1w
+ 0 3 4
+ x = (a, b, c) -> (b, 0, 0, c, a, 0) = X0 + X1w
+ X0 = b = (b, 0, 0)
+ X1 = c + av = (c, a, 0)
+ w^2 = v, v^3 = xi
+ output
+ z <- zx = (Z0X0 + Z1X1v) + ((Z0 + Z1)(X0 + X1) - Z0X0 - Z1X1)w
+ Z0X0 = Z0 b
+ Z1X1 = Z1 (c, a, 0)
+ (Z0 + Z1)(X0 + X1) = (Z0 + Z1) (b + c, a, 0)
+ */
+ static void mul_403(Fp12& z, const Fp6& x)
+ {
+ const Fp2& a = x.a;
+ const Fp2& b = x.b;
+ const Fp2& c = x.c;
+#if 0
+ Fp6& z0 = z.a;
+ Fp6& z1 = z.b;
+ Fp6 z0x0, z1x1, t0;
+ Fp2 t1;
+ Fp2::add(t1, x.b, c);
+ Fp6::add(t0, z0, z1);
+ Fp2::mul(z0x0.a, z0.a, b);
+ Fp2::mul(z0x0.b, z0.b, b);
+ Fp2::mul(z0x0.c, z0.c, b);
+ Fp6mul_01(z1x1, z1, c, a);
+ Fp6mul_01(t0, t0, t1, a);
+ Fp6::sub(z.b, t0, z0x0);
+ z.b -= z1x1;
+ // a + bv + cv^2 = cxi + av + bv^2
+ Fp2::mul_xi(z1x1.c, z1x1.c);
+ Fp2::add(z.a.a, z0x0.a, z1x1.c);
+ Fp2::add(z.a.b, z0x0.b, z1x1.a);
+ Fp2::add(z.a.c, z0x0.c, z1x1.b);
+#else
+ Fp2& z0 = z.a.a;
+ Fp2& z1 = z.a.b;
+ Fp2& z2 = z.a.c;
+ Fp2& z3 = z.b.a;
+ Fp2& z4 = z.b.b;
+ Fp2& z5 = z.b.c;
+ Fp2Dbl Z0B, Z1B, Z2B, Z3C, Z4C, Z5C;
+ Fp2Dbl T0, T1, T2, T3, T4, T5;
+ Fp2 bc, t;
+ Fp2::addPre(bc, b, c);
+ Fp2::addPre(t, z5, z2);
+ Fp2Dbl::mulPre(T5, t, bc);
+ Fp2Dbl::mulPre(Z5C, z5, c);
+ Fp2Dbl::mulPre(Z2B, z2, b);
+ Fp2Dbl::sub(T5, T5, Z5C);
+ Fp2Dbl::sub(T5, T5, Z2B);
+ Fp2Dbl::mulPre(T0, z1, a);
+ T5 += T0;
+
+ Fp2::addPre(t, z4, z1);
+ Fp2Dbl::mulPre(T4, t, bc);
+ Fp2Dbl::mulPre(Z4C, z4, c);
+ Fp2Dbl::mulPre(Z1B, z1, b);
+ Fp2Dbl::sub(T4, T4, Z4C);
+ Fp2Dbl::sub(T4, T4, Z1B);
+ Fp2Dbl::mulPre(T0, z0, a);
+ T4 += T0;
+
+ Fp2::addPre(t, z3, z0);
+ Fp2Dbl::mulPre(T3, t, bc);
+ Fp2Dbl::mulPre(Z3C, z3, c);
+ Fp2Dbl::mulPre(Z0B, z0, b);
+ Fp2Dbl::sub(T3, T3, Z3C);
+ Fp2Dbl::sub(T3, T3, Z0B);
+ Fp2::mul_xi(t, z2);
+ Fp2Dbl::mulPre(T0, t, a);
+ T3 += T0;
+
+ Fp2Dbl::mulPre(T2, z3, a);
+ T2 += Z2B;
+ T2 += Z4C;
+
+ Fp2::mul_xi(t, z5);
+ Fp2Dbl::mulPre(T1, t, a);
+ T1 += Z1B;
+ T1 += Z3C;
+
+ Fp2Dbl::mulPre(T0, z4, a);
+ T0 += Z5C;
+ Fp2Dbl::mul_xi(T0, T0);
+ T0 += Z0B;
+
+ Fp2Dbl::mod(z0, T0);
+ Fp2Dbl::mod(z1, T1);
+ Fp2Dbl::mod(z2, T2);
+ Fp2Dbl::mod(z3, T3);
+ Fp2Dbl::mod(z4, T4);
+ Fp2Dbl::mod(z5, T5);
+#endif
+ }
+ /*
+ input
+ z = (z0 + z1v + z2v^2) + (z3 + z4v + z5v^2)w = Z0 + Z1w
+ 0 1 4
+ x = (a, b, c) -> (a, c, 0, 0, b, 0) = X0 + X1w
+ X0 = (a, c, 0)
+ X1 = (0, b, 0)
+ w^2 = v, v^3 = xi
+ output
+ z <- zx = (Z0X0 + Z1X1v) + ((Z0 + Z1)(X0 + X1) - Z0X0 - Z1X1)w
+ Z0X0 = Z0 (a, c, 0)
+ Z1X1 = Z1 (0, b, 0) = Z1 bv
+ (Z0 + Z1)(X0 + X1) = (Z0 + Z1) (a, b + c, 0)
+
+ (a + bv + cv^2)v = c xi + av + bv^2
+ */
+ static void mul_041(Fp12& z, const Fp6& x)
+ {
+ const Fp2& a = x.a;
+ const Fp2& b = x.b;
+ const Fp2& c = x.c;
+ Fp6& z0 = z.a;
+ Fp6& z1 = z.b;
+ Fp6 z0x0, z1x1, t0;
+ Fp2 t1;
+ Fp2::mul(z1x1.a, z1.c, b);
+ Fp2::mul_xi(z1x1.a, z1x1.a);
+ Fp2::mul(z1x1.b, z1.a, b);
+ Fp2::mul(z1x1.c, z1.b, b);
+ Fp2::add(t1, x.b, c);
+ Fp6::add(t0, z0, z1);
+ Fp6mul_01(z0x0, z0, a, c);
+ Fp6mul_01(t0, t0, a, t1);
+ Fp6::sub(z.b, t0, z0x0);
+ z.b -= z1x1;
+ // a + bv + cv^2 = cxi + av + bv^2
+ Fp2::mul_xi(z1x1.c, z1x1.c);
+ Fp2::add(z.a.a, z0x0.a, z1x1.c);
+ Fp2::add(z.a.b, z0x0.b, z1x1.a);
+ Fp2::add(z.a.c, z0x0.c, z1x1.b);
+ }
+ /*
+ input
+ z = (z0 + z1v + z2v^2) + (z3 + z4v + z5v^2)w
+ x = (a, b, c) -> (a, 0, c, 0, b, 0)
+ output
+ z <- zx = (z0a + (z1c + z4b)xi) + (z1a + (z2c + z5b)xi)v + (z0c + z2a + z3b)v^2
+ + (z3a + (z2b + z4c)xi)w + (z0b + z4a + z5cxi)vw + (z1b + z3c + z5a)v^2w
+
+ z1c + z4b = (z1 + z4)(c + b) - z1b - z4c
+ z2c + z5b = (z2 + z5)(c + b) - z2b - z5c
+ z0c + z3b = (z0 + z3)(c + b) - z0b - z3c
+ */
+ static void mulSparse(Fp12& z, const Fp6& x)
+ {
+#ifdef MCL_USE_BLS12
+ mul_041(z, x);
+ return;
+#endif
+ mul_403(z, x);
+ }
+ static void convertFp6toFp12(Fp12& y, const Fp6& x)
+ {
+ y.clear();
+ if (param.isMtype) {
+ // (a, b, c) -> (a, c, 0, 0, b, 0)
+ y.a.a = x.a;
+ y.b.b = x.b;
+ y.a.b = x.c;
+ } else {
+ // (a, b, c) -> (b, 0, 0, c, a, 0)
+ y.b.b = x.a;
+ y.a.a = x.b;
+ y.b.a = x.c;
+ }
+ }
+ static void mulSparse2(Fp12& z, const Fp6& x, const Fp6& y)
+ {
+ convertFp6toFp12(z, x);
+ mulSparse(z, y);
+ }
+#if 0
+ /*
+ y = x^d
+ d = (p^4 - p^2 + 1)/r = c0 + c1 p + c2 p^2 + p^3
+ */
+ static void exp_d(Fp12& y, const Fp12& x)
+ {
+#if 1
+ Fp12 t1, t2, t3;
+ Fp12::Frobenius(t1, x);
+ Fp12::Frobenius(t2, t1);
+ Fp12::Frobenius(t3, t2);
+ Fp12::pow(t1, t1, param.exp_c1);
+ Fp12::pow(t2, t2, param.exp_c2);
+ Fp12::pow(y, x, param.exp_c0);
+ y *= t1;
+ y *= t2;
+ y *= t3;
+#else
+ const mpz_class& p = param.p;
+ mpz_class p2 = p * p;
+ mpz_class p4 = p2 * p2;
+ Fp12::pow(y, x, (p4 - p2 + 1) / param.r);
+#endif
+ }
+#endif
+ /*
+ Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions
+ Robert Granger, Michael Scott
+ */
+ static void sqrFp4(Fp2& z0, Fp2& z1, const Fp2& x0, const Fp2& x1)
+ {
+#if 1
+ Fp2Dbl T0, T1, T2;
+ Fp2Dbl::sqrPre(T0, x0);
+ Fp2Dbl::sqrPre(T1, x1);
+ Fp2Dbl::mul_xi(T2, T1);
+ Fp2Dbl::add(T2, T2, T0);
+ Fp2::add(z1, x0, x1);
+ Fp2Dbl::mod(z0, T2);
+ Fp2Dbl::sqrPre(T2, z1);
+ Fp2Dbl::sub(T2, T2, T0);
+ Fp2Dbl::sub(T2, T2, T1);
+ Fp2Dbl::mod(z1, T2);
+#else
+ Fp2 t0, t1, t2;
+ Fp2::sqr(t0, x0);
+ Fp2::sqr(t1, x1);
+ Fp2::mul_xi(z0, t1);
+ z0 += t0;
+ Fp2::add(z1, x0, x1);
+ Fp2::sqr(z1, z1);
+ z1 -= t0;
+ z1 -= t1;
+#endif
+ }
+ static void fasterSqr(Fp12& y, const Fp12& x)
+ {
+#if 0
+ Fp12::sqr(y, x);
+#else
+ const Fp2& x0(x.a.a);
+ const Fp2& x4(x.a.b);
+ const Fp2& x3(x.a.c);
+ const Fp2& x2(x.b.a);
+ const Fp2& x1(x.b.b);
+ const Fp2& x5(x.b.c);
+ Fp2& y0(y.a.a);
+ Fp2& y4(y.a.b);
+ Fp2& y3(y.a.c);
+ Fp2& y2(y.b.a);
+ Fp2& y1(y.b.b);
+ Fp2& y5(y.b.c);
+ Fp2 t0, t1;
+ sqrFp4(t0, t1, x0, x1);
+ Fp2::sub(y0, t0, x0);
+ y0 += y0;
+ y0 += t0;
+ Fp2::add(y1, t1, x1);
+ y1 += y1;
+ y1 += t1;
+ Fp2 t2, t3;
+ sqrFp4(t0, t1, x2, x3);
+ sqrFp4(t2, t3, x4, x5);
+ Fp2::sub(y4, t0, x4);
+ y4 += y4;
+ y4 += t0;
+ Fp2::add(y5, t1, x5);
+ y5 += y5;
+ y5 += t1;
+ Fp2::mul_xi(t0, t3);
+ Fp2::add(y2, t0, x2);
+ y2 += y2;
+ y2 += t0;
+ Fp2::sub(y3, t2, x3);
+ y3 += y3;
+ y3 += t2;
+#endif
+ }
+ /*
+ Faster Hashing to G2
+ Laura Fuentes-Castaneda, Edward Knapp, Francisco Rodriguez-Henriquez
+ section 4.1
+ y = x^(d 2z(6z^2 + 3z + 1)) where
+ p = p(z) = 36z^4 + 36z^3 + 24z^2 + 6z + 1
+ r = r(z) = 36z^4 + 36z^3 + 18z^2 + 6z + 1
+ d = (p^4 - p^2 + 1) / r
+ d1 = d 2z(6z^2 + 3z + 1)
+ = c0 + c1 p + c2 p^2 + c3 p^3
+
+ c0 = 1 + 6z + 12z^2 + 12z^3
+ c1 = 4z + 6z^2 + 12z^3
+ c2 = 6z + 6z^2 + 12z^3
+ c3 = -1 + 4z + 6z^2 + 12z^3
+ x -> x^z -> x^2z -> x^4z -> x^6z -> x^(6z^2) -> x^(12z^2) -> x^(12z^3)
+ a = x^(6z) x^(6z^2) x^(12z^3)
+ b = a / (x^2z)
+ x^d1 = (a x^(6z^2) x) b^p a^(p^2) (b / x)^(p^3)
+ */
+ static void exp_d1(Fp12& y, const Fp12& x)
+ {
+ Fp12 a, b;
+ Fp12 a2, a3;
+ pow_z(b, x); // x^z
+ fasterSqr(b, b); // x^2z
+ fasterSqr(a, b); // x^4z
+ a *= b; // x^6z
+ pow_z(a2, a); // x^(6z^2)
+ a *= a2;
+ fasterSqr(a3, a2); // x^(12z^2)
+ pow_z(a3, a3); // x^(12z^3)
+ a *= a3;
+ Fp12::unitaryInv(b, b);
+ b *= a;
+ a2 *= a;
+ Fp12::Frobenius2(a, a);
+ a *= a2;
+ a *= x;
+ Fp12::unitaryInv(y, x);
+ y *= b;
+ Fp12::Frobenius(b, b);
+ a *= b;
+ Fp12::Frobenius3(y, y);
+ y *= a;
+ }
+ static void mapToCyclotomic(Fp12& y, const Fp12& x)
+ {
+ Fp12 z;
+ Fp12::Frobenius2(z, x); // z = x^(p^2)
+ z *= x; // x^(p^2 + 1)
+ Fp12::inv(y, z);
+ Fp6::neg(z.b, z.b); // z^(p^6) = conjugate of z
+ y *= z;
+ }
+#ifdef MCL_USE_BLS12
+ static void exp_d(Fp12& y, const Fp12& x)
+ {
+#if 0
+ const mpz_class& p = param.p;
+ mpz_class p2 = p * p;
+ mpz_class p4 = p2 * p2;
+ Fp12::pow(y, x, (p4 - p2 + 1) / param.r * 3);
+ return;
+#endif
+#if 1
+ Fp12 a0, a1, a2, a3, a4, a5, a6, a7;
+ Fp12::unitaryInv(a0, x); // a0 = x^-1
+ fasterSqr(a1, a0); // x^-2
+ pow_z(a2, x); // x^z
+ fasterSqr(a3, a2); // x^2z
+ a1 *= a2; // a1 = x^(z-2)
+ pow_z(a7, a1); // a7 = x^(z^2-2z)
+ pow_z(a4, a7); // a4 = x^(z^3-2z^2)
+ pow_z(a5, a4); // a5 = x^(z^4-2z^3)
+ a3 *= a5; // a3 = x^(z^4-2z^3+2z)
+ pow_z(a6, a3); // a6 = x^(z^5-2z^4+2z^2)
+
+ Fp12::unitaryInv(a1, a1); // x^(2-z)
+ a1 *= a6; // x^(z^5-2z^4+2z^2-z+2)
+ a1 *= x; // x^(z^5-2z^4+2z^2-z+3) = x^c0
+ a3 *= a0; // x^(z^4-2z^3-1) = x^c1
+ Fp12::Frobenius(a3, a3); // x^(c1 p)
+ a1 *= a3; // x^(c0 + c1 p)
+ a4 *= a2; // x^(z^3-2z^2+z) = x^c2
+ Fp12::Frobenius2(a4, a4); // x^(c2 p^2)
+ a1 *= a4; // x^(c0 + c1 p + c2 p^2)
+ a7 *= x; // x^(z^2-2z+1) = x^c3
+ Fp12::Frobenius3(y, a7);
+ y *= a1;
+#else
+ Fp12 t1, t2, t3;
+ Fp12::Frobenius(t1, x);
+ Fp12::Frobenius(t2, t1);
+ Fp12::Frobenius(t3, t2);
+ Fp12::pow(t1, t1, param.exp_c1);
+ Fp12::pow(t2, t2, param.exp_c2);
+ Fp12::pow(t3, t3, param.exp_c3);
+ Fp12::pow(y, x, param.exp_c0);
+ y *= t1;
+ y *= t2;
+ y *= t3;
+#endif
+ }
+#endif
+ /*
+ y = x^((p^12 - 1) / r)
+ (p^12 - 1) / r = (p^2 + 1) (p^6 - 1) (p^4 - p^2 + 1)/r
+ (a + bw)^(p^6) = a - bw in Fp12
+ (p^4 - p^2 + 1)/r = c0 + c1 p + c2 p^2 + p^3
+ */
+ static void finalExp(Fp12& y, const Fp12& x)
+ {
+#if 1
+ mapToCyclotomic(y, x);
+#else
+ const mpz_class& p = param.p;
+ mpz_class p2 = p * p;
+ mpz_class p4 = p2 * p2;
+ Fp12::pow(y, x, p2 + 1);
+ Fp12::pow(y, y, p4 * p2 - 1);
+#endif
+#ifdef MCL_USE_BLS12
+ exp_d(y, y);
+#else
+ exp_d1(y, y);
+#endif
+ }
+ /*
+ remark : returned value is NOT on a curve
+ */
+ static G1 makeAdjP(const G1& P)
+ {
+ G1 adjP;
+ Fp::add(adjP.x, P.x, P.x);
+ adjP.x += P.x;
+ Fp::neg(adjP.y, P.y);
+ adjP.z = 1;
+ return adjP;
+ }
+ static void millerLoop(Fp12& f, const G1& P_, const G2& Q_)
+ {
+ G1 P(P_);
+ G2 Q(Q_);
+ P.normalize();
+ Q.normalize();
+ if (Q.isZero()) {
+ f = 1;
+ return;
+ }
+ assert(param.siTbl[1] == 1);
+ G2 T = Q;
+ G2 negQ;
+ if (param.useNAF) {
+ G2::neg(negQ, Q);
+ }
+ Fp6 d, e, l;
+ d = e = l = 1;
+ G1 adjP = makeAdjP(P);
+ dblLine(d, T, adjP);
+ addLine(l, T, Q, P);
+ mulSparse2(f, d, l);
+ for (size_t i = 2; i < param.siTbl.size(); i++) {
+ dblLine(l, T, adjP);
+ Fp12::sqr(f, f);
+ mulSparse(f, l);
+ if (param.siTbl[i]) {
+ if (param.siTbl[i] > 0) {
+ addLine(l, T, Q, P);
+ } else {
+ addLine(l, T, negQ, P);
+ }
+ mulSparse(f, l);
+ }
+ }
+ if (param.z < 0) {
+ G2::neg(T, T);
+ Fp6::neg(f.b, f.b);
+ }
+#ifndef MCL_USE_BLS12
+ G2 Q1, Q2;
+ G2withF::Frobenius(Q1, Q);
+ G2withF::Frobenius(Q2, Q1);
+ G2::neg(Q2, Q2);
+ addLine(d, T, Q1, P);
+ addLine(e, T, Q2, P);
+ Fp12 ft;
+ mulSparse2(ft, d, e);
+ f *= ft;
+#endif
+ }
+ static void pairing(Fp12& f, const G1& P, const G2& Q)
+ {
+ millerLoop(f, P, Q);
+ finalExp(f, f);
+ }
+ /*
+ millerLoop(e, P, Q) is same as the following
+ std::vector<Fp6> Qcoeff;
+ precomputeG2(Qcoeff, Q);
+ precomputedMillerLoop(e, P, Qcoeff);
+ */
+ static void precomputeG2(std::vector<Fp6>& Qcoeff, const G2& Q)
+ {
+ Qcoeff.resize(param.precomputedQcoeffSize);
+ precomputeG2(Qcoeff.data(), Q);
+ }
+ /*
+ allocate param.precomputedQcoeffSize elements of Fp6 for Qcoeff
+ */
+ static void precomputeG2(Fp6 *Qcoeff, const G2& Q_)
+ {
+ size_t idx = 0;
+ G2 Q(Q_);
+ Q.normalize();
+ if (Q.isZero()) {
+ for (size_t i = 0; i < param.precomputedQcoeffSize; i++) {
+ Qcoeff[i] = 1;
+ }
+ return;
+ }
+ G2 T = Q;
+ G2 negQ;
+ if (param.useNAF) {
+ G2::neg(negQ, Q);
+ }
+ assert(param.siTbl[1] == 1);
+ dblLineWithoutP(Qcoeff[idx++], T);
+ addLineWithoutP(Qcoeff[idx++], T, Q);
+ for (size_t i = 2; i < param.siTbl.size(); i++) {
+ dblLineWithoutP(Qcoeff[idx++], T);
+ if (param.siTbl[i]) {
+ if (param.siTbl[i] > 0) {
+ addLineWithoutP(Qcoeff[idx++], T, Q);
+ } else {
+ addLineWithoutP(Qcoeff[idx++], T, negQ);
+ }
+ }
+ }
+ if (param.z < 0) {
+ G2::neg(T, T);
+ }
+#ifndef MCL_USE_BLS12
+ G2 Q1, Q2;
+ G2withF::Frobenius(Q1, Q);
+ G2withF::Frobenius(Q2, Q1);
+ G2::neg(Q2, Q2);
+ addLineWithoutP(Qcoeff[idx++], T, Q1);
+ addLineWithoutP(Qcoeff[idx++], T, Q2);
+ assert(idx == param.precomputedQcoeffSize);
+#endif
+ }
+ static void precomputedMillerLoop(Fp12& f, const G1& P, const std::vector<Fp6>& Qcoeff)
+ {
+ precomputedMillerLoop(f, P, Qcoeff.data());
+ }
+ static void precomputedMillerLoop(Fp12& f, const G1& P_, const Fp6* Qcoeff)
+ {
+ G1 P(P_);
+ P.normalize();
+ G1 adjP = makeAdjP(P);
+ size_t idx = 0;
+ Fp6 d, e, l;
+ mulFp6cb_by_G1xy(d, Qcoeff[idx], adjP);
+ idx++;
+
+ mulFp6cb_by_G1xy(e, Qcoeff[idx], P);
+ idx++;
+ mulSparse2(f, d, e);
+ for (size_t i = 2; i < param.siTbl.size(); i++) {
+ mulFp6cb_by_G1xy(l, Qcoeff[idx], adjP);
+ idx++;
+ Fp12::sqr(f, f);
+ mulSparse(f, l);
+ if (param.siTbl[i]) {
+ mulFp6cb_by_G1xy(l, Qcoeff[idx], P);
+ idx++;
+ mulSparse(f, l);
+ }
+ }
+ if (param.z < 0) {
+ Fp6::neg(f.b, f.b);
+ }
+#ifndef MCL_USE_BLS12
+ mulFp6cb_by_G1xy(d, Qcoeff[idx], P);
+ idx++;
+ mulFp6cb_by_G1xy(e, Qcoeff[idx], P);
+ idx++;
+ Fp12 ft;
+ mulSparse2(ft, d, e);
+ f *= ft;
+#endif
+ }
+ /*
+ f = MillerLoop(P1, Q1) x MillerLoop(P2, Q2)
+ */
+ static void precomputedMillerLoop2(Fp12& f, const G1& P1, const std::vector<Fp6>& Q1coeff, const G1& P2, const std::vector<Fp6>& Q2coeff)
+ {
+ precomputedMillerLoop2(f, P1, Q1coeff.data(), P2, Q2coeff.data());
+ }
+ static void precomputedMillerLoop2(Fp12& f, const G1& P1_, const Fp6* Q1coeff, const G1& P2_, const Fp6* Q2coeff)
+ {
+ G1 P1(P1_), P2(P2_);
+ P1.normalize();
+ P2.normalize();
+ G1 adjP1 = makeAdjP(P1);
+ G1 adjP2 = makeAdjP(P2);
+ size_t idx = 0;
+ Fp6 d1, d2, e1, e2, l1, l2;
+ mulFp6cb_by_G1xy(d1, Q1coeff[idx], adjP1);
+ mulFp6cb_by_G1xy(d2, Q2coeff[idx], adjP2);
+ idx++;
+
+ Fp12 f1, f2;
+ mulFp6cb_by_G1xy(e1, Q1coeff[idx], P1);
+ mulSparse2(f1, d1, e1);
+
+ mulFp6cb_by_G1xy(e2, Q2coeff[idx], P2);
+ mulSparse2(f2, d2, e2);
+ Fp12::mul(f, f1, f2);
+ idx++;
+ for (size_t i = 2; i < param.siTbl.size(); i++) {
+ mulFp6cb_by_G1xy(l1, Q1coeff[idx], adjP1);
+ mulFp6cb_by_G1xy(l2, Q2coeff[idx], adjP2);
+ idx++;
+ Fp12::sqr(f, f);
+ mulSparse2(f1, l1, l2);
+ f *= f1;
+ if (param.siTbl[i]) {
+ mulFp6cb_by_G1xy(l1, Q1coeff[idx], P1);
+ mulFp6cb_by_G1xy(l2, Q2coeff[idx], P2);
+ idx++;
+ mulSparse2(f1, l1, l2);
+ f *= f1;
+ }
+ }
+ if (param.z < 0) {
+ Fp6::neg(f.b, f.b);
+ }
+#ifndef MCL_USE_BLS12
+ mulFp6cb_by_G1xy(d1, Q1coeff[idx], P1);
+ mulFp6cb_by_G1xy(d2, Q2coeff[idx], P2);
+ idx++;
+ mulFp6cb_by_G1xy(e1, Q1coeff[idx], P1);
+ mulFp6cb_by_G1xy(e2, Q2coeff[idx], P2);
+ idx++;
+ mulSparse2(f1, d1, e1);
+ mulSparse2(f2, d2, e2);
+ f *= f1;
+ f *= f2;
+#endif
+ }
+ static void mapToG1(G1& P, const Fp& x) { param.mapTo.calcG1(P, x); }
+ static void mapToG2(G2& P, const Fp2& x) { param.mapTo.calcG2(P, x); }
+ static void hashAndMapToG1(G1& P, const void *buf, size_t bufSize)
+ {
+ Fp t;
+ t.setHashOf(buf, bufSize);
+ mapToG1(P, t);
+ }
+ static void hashAndMapToG2(G2& P, const void *buf, size_t bufSize)
+ {
+ Fp2 t;
+ t.a.setHashOf(buf, bufSize);
+ t.b.clear();
+ mapToG2(P, t);
+ }
+ static void hashAndMapToG1(G1& P, const std::string& str)
+ {
+ hashAndMapToG1(P, str.c_str(), str.size());
+ }
+ static void hashAndMapToG2(G2& P, const std::string& str)
+ {
+ hashAndMapToG2(P, str.c_str(), str.size());
+ }
+};
+
+template<class Fp, class Param>
+Param BasePairingT<Fp, Param>::param;
+
} // mcl::util
} // mcl