1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
#pragma once
/**
@file
@brief finite field extension class
@author MITSUNARI Shigeo(@herumi)
@license modified new BSD license
http://opensource.org/licenses/BSD-3-Clause
*/
#include <mcl/fp.hpp>
namespace mcl {
template<class Fp>
class FpDblT {
typedef fp::Unit Unit;
Unit v_[Fp::maxSize * 2];
public:
static size_t getUnitSize() { return Fp::op_.N * 2; }
void dump() const
{
const size_t n = getUnitSize();
for (size_t i = 0; i < n; i++) {
printf("%016llx ", (long long)v_[n - 1 - i]);
}
printf("\n");
}
void clear()
{
const size_t n = getUnitSize();
for (size_t i = 0; i < n; i++) {
v_[i] = 0;
}
}
FpDblT& operator=(const FpDblT& rhs)
{
const size_t n = getUnitSize();
for (size_t i = 0; i < n; i++) {
v_[i] = rhs.v_[i];
}
return *this;
}
// QQQ : does not check range of x strictly(use for debug)
void setMpz(const mpz_class& x)
{
if (x < 0) throw cybozu::Exception("FpDblT:_setMpz:negative is not supported") << x;
const size_t xn = gmp::getUnitSize(x);
const size_t N2 = getUnitSize();
if (xn > N2) {
throw cybozu::Exception("FpDblT:setMpz:too large") << x;
}
memcpy(v_, gmp::getUnit(x), xn * sizeof(Unit));
memset(v_ + xn, 0, (N2 - xn) * sizeof(Unit));
}
void getMpz(mpz_class& x) const
{
gmp::setArray(x, v_, Fp::op_.N * 2);
}
static void add(FpDblT& z, const FpDblT& x, const FpDblT& y) { Fp::op_.fpDbl_add(z.v_, x.v_, y.v_, Fp::op_.p); }
static void sub(FpDblT& z, const FpDblT& x, const FpDblT& y) { Fp::op_.fpDbl_sub(z.v_, x.v_, y.v_, Fp::op_.p); }
static void addPre(FpDblT& z, const FpDblT& x, const FpDblT& y) { Fp::op_.fpDbl_addPre(z.v_, x.v_, y.v_); }
static void subPre(FpDblT& z, const FpDblT& x, const FpDblT& y) { Fp::op_.fpDbl_subPre(z.v_, x.v_, y.v_); }
/*
mul(z, x, y) = mulPre(xy, x, y) + mod(z, xy)
*/
static void mulPre(FpDblT& xy, const Fp& x, const Fp& y) { Fp::op_.fpDbl_mulPre(xy.v_, x.v_, y.v_); }
static void sqrPre(FpDblT& xx, const Fp& x) { Fp::op_.fpDbl_sqrPre(xx.v_, x.v_); }
static void mod(Fp& z, const FpDblT& xy) { Fp::op_.fpDbl_mod(z.v_, xy.v_, Fp::op_.p); }
static void mulUnit(FpDblT& z, const FpDblT& x, Unit y)
{
if (mulSmallUnit(z, x, y)) return;
throw cybozu::Exception("mulUnit:not supported") << y;
}
};
/*
beta = -1
Fp2 = F[i] / (i^2 + 1)
x = a + bi
*/
template<class Fp>
class Fp2T : public fp::Operator<Fp2T<Fp> > {
typedef fp::Unit Unit;
typedef FpDblT<Fp> FpDbl;
static uint32_t xi_a_;
public:
typedef typename Fp::BaseFp BaseFp;
Fp a, b;
Fp2T() { }
Fp2T(int64_t a) : a(a), b(0) { }
Fp2T(const Fp& a, const Fp& b) : a(a), b(b) { }
Fp2T(int64_t a, int64_t b) : a(a), b(b) { }
Fp2T(const std::string& a, const std::string& b, int base = 0) : a(a, base), b(b, base) {}
Fp* getFp0() { return &a; }
const Fp* getFp0() const { return &a; }
void clear()
{
a.clear();
b.clear();
}
static void add(Fp2T& z, const Fp2T& x, const Fp2T& y) { Fp::op_.fp2_add(z.a.v_, x.a.v_, y.a.v_); }
static void sub(Fp2T& z, const Fp2T& x, const Fp2T& y) { Fp::op_.fp2_sub(z.a.v_, x.a.v_, y.a.v_); }
static void mul(Fp2T& z, const Fp2T& x, const Fp2T& y) { Fp::op_.fp2_mul(z.a.v_, x.a.v_, y.a.v_); }
static void inv(Fp2T& y, const Fp2T& x) { Fp::op_.fp2_inv(y.a.v_, x.a.v_); }
static void neg(Fp2T& y, const Fp2T& x) { Fp::op_.fp2_neg(y.a.v_, x.a.v_); }
static void sqr(Fp2T& y, const Fp2T& x) { Fp::op_.fp2_sqr(y.a.v_, x.a.v_); }
static void mul_xi(Fp2T& y, const Fp2T& x) { Fp::op_.fp2_mul_xi(y.a.v_, x.a.v_); }
static void divBy2(Fp2T& y, const Fp2T& x)
{
Fp::divBy2(y.a, x.a);
Fp::divBy2(y.b, x.b);
}
/*
Fp2T = <a> + ' ' + <b>
*/
friend std::ostream& operator<<(std::ostream& os, const Fp2T& self)
{
return os << self.a << Fp::getIoSeparator() << self.b;
}
friend std::istream& operator>>(std::istream& is, Fp2T& self)
{
return is >> self.a >> self.b;
}
std::string getStr(int ioMode)
{
return a.getStr(ioMode) + fp::getIoSeparator(ioMode) + b.getStr(ioMode);
}
bool isZero() const { return a.isZero() && b.isZero(); }
bool isOne() const { return a.isOne() && b.isZero(); }
bool operator==(const Fp2T& rhs) const { return a == rhs.a && b == rhs.b; }
bool operator!=(const Fp2T& rhs) const { return !operator==(rhs); }
void normalize() {} // dummy method
/*
return true is a is odd (do not consider b)
this function is for only compressed reprezentation of EC
isOdd() is not good naming. QQQ
*/
bool isOdd() const { return a.isOdd(); }
/*
(a + bi)^2 = (a^2 - b^2) + 2ab i = c + di
A = a^2
B = b^2
A = (c +/- sqrt(c^2 + d^2))/2
b = d / 2a
*/
static inline bool squareRoot(Fp2T& y, const Fp2T& x)
{
Fp t1, t2;
if (x.b.isZero()) {
if (Fp::squareRoot(t1, x.a)) {
y.a = t1;
y.b.clear();
} else {
if (!Fp::squareRoot(t1, -x.a)) throw cybozu::Exception("Fp2T:squareRoot:internal error1") << x;
y.a.clear();
y.b = t1;
}
return true;
}
Fp::sqr(t1, x.a);
Fp::sqr(t2, x.b);
t1 += t2; // c^2 + d^2
if (!Fp::squareRoot(t1, t1)) return false;
Fp::add(t2, x.a, t1);
Fp::divBy2(t2, t2);
if (!Fp::squareRoot(t2, t2)) {
Fp::sub(t2, x.a, t1);
Fp::divBy2(t2, t2);
if (!Fp::squareRoot(t2, t2)) throw cybozu::Exception("Fp2T:squareRoot:internal error2") << x;
}
y.a = t2;
t2 += t2;
Fp::inv(t2, t2);
Fp::mul(y.b, x.b, t2);
return true;
}
static void inline norm(Fp& y, const Fp2T& x)
{
Fp aa, bb;
Fp::sqr(aa, x.a);
Fp::sqr(bb, x.b);
Fp::add(y, aa, bb);
}
static uint32_t get_xi_a() { return xi_a_; }
static void init(uint32_t xi_a)
{
// assert(Fp::maxSize <= 256);
xi_a_ = xi_a;
mcl::fp::Op& op = Fp::op_;
op.fp2_add = fp2_addW;
op.fp2_sub = fp2_subW;
if (op.isFastMod) {
op.fp2_mul = fp2_mulW;
} else if (!op.isFullBit) {
op.fp2_mul = fp2_mulUseDblUseNCW;
} else {
op.fp2_mul = fp2_mulUseDblW;
}
op.fp2_neg = fp2_negW;
op.fp2_inv = fp2_invW;
op.fp2_sqr = fp2_sqrW;
if (xi_a == 1) {
op.fp2_mul_xi = fp2_mul_xi_1_1i;
} else {
op.fp2_mul_xi = fp2_mul_xiW;
}
}
private:
/*
default Fp2T operator
Fp2T = Fp[i]/(i^2 + 1)
*/
static void fp2_addW(Unit *z, const Unit *x, const Unit *y)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
const Fp *py = reinterpret_cast<const Fp*>(y);
Fp *pz = reinterpret_cast<Fp*>(z);
Fp::add(pz[0], px[0], py[0]);
Fp::add(pz[1], px[1], py[1]);
}
static void fp2_subW(Unit *z, const Unit *x, const Unit *y)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
const Fp *py = reinterpret_cast<const Fp*>(y);
Fp *pz = reinterpret_cast<Fp*>(z);
Fp::sub(pz[0], px[0], py[0]);
Fp::sub(pz[1], px[1], py[1]);
}
static void fp2_negW(Unit *y, const Unit *x)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
Fp *py = reinterpret_cast<Fp*>(y);
Fp::neg(py[0], px[0]);
Fp::neg(py[1], px[1]);
}
/*
x = a + bi, y = c + di, i^2 = -1
z = xy = (a + bi)(c + di) = (ac - bd) + (ad + bc)i
ad+bc = (a + b)(c + d) - ac - bd
# of mod = 3
*/
static void fp2_mulW(Unit *z, const Unit *x, const Unit *y)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
const Fp *py = reinterpret_cast<const Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
const Fp& c = py[0];
const Fp& d = py[1];
Fp *pz = reinterpret_cast<Fp*>(z);
Fp t1, t2, ac, bd;
Fp::add(t1, a, b);
Fp::add(t2, c, d);
t1 *= t2; // (a + b)(c + d)
Fp::mul(ac, a, c);
Fp::mul(bd, b, d);
Fp::sub(pz[0], ac, bd); // ac - bd
Fp::sub(pz[1], t1, ac);
pz[1] -= bd;
}
/*
# of mod = 2
@note mod of NIST_P192 is fast
*/
static void fp2_mulUseDblW(Unit *z, const Unit *x, const Unit *y)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
const Fp *py = reinterpret_cast<const Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
const Fp& c = py[0];
const Fp& d = py[1];
FpDbl d0, d1, d2;
Fp s, t;
Fp::add(s, a, b);
Fp::add(t, c, d);
FpDbl::mulPre(d0, s, t); // (a + b)(c + d)
FpDbl::mulPre(d1, a, c);
FpDbl::mulPre(d2, b, d);
FpDbl::sub(d0, d0, d1); // (a + b)(c + d) - ac
FpDbl::sub(d0, d0, d2); // (a + b)(c + d) - ac - bd
Fp *pz = reinterpret_cast<Fp*>(z);
FpDbl::mod(pz[1], d0);
FpDbl::sub(d1, d1, d2); // ac - bd
FpDbl::mod(pz[0], d1); // set z0
}
static void fp2_mulUseDblUseNCW(Unit *z, const Unit *x, const Unit *y)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
const Fp *py = reinterpret_cast<const Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
const Fp& c = py[0];
const Fp& d = py[1];
FpDbl d0, d1, d2;
Fp s, t;
Fp::addPre(s, a, b);
Fp::addPre(t, c, d);
FpDbl::mulPre(d0, s, t); // (a + b)(c + d)
FpDbl::mulPre(d1, a, c);
FpDbl::mulPre(d2, b, d);
FpDbl::subPre(d0, d0, d1); // (a + b)(c + d) - ac
FpDbl::subPre(d0, d0, d2); // (a + b)(c + d) - ac - bd
Fp *pz = reinterpret_cast<Fp*>(z);
FpDbl::mod(pz[1], d0);
FpDbl::sub(d1, d1, d2); // ac - bd
FpDbl::mod(pz[0], d1); // set z0
}
/*
x = a + bi, i^2 = -1
y = x^2 = (a + bi)^2 = (a + b)(a - b) + 2abi
*/
static void fp2_sqrW(Unit *y, const Unit *x)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
Fp *py = reinterpret_cast<Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
#if 1 // faster than using FpDbl
Fp t1, t2, t3;
Fp::add(t1, b, b); // 2b
t1 *= a; // 2ab
Fp::add(t2, a, b); // a + b
Fp::sub(t3, a, b); // a - b
Fp::mul(py[0], t2, t3); // (a + b)(a - b)
py[1] = t1;
#else
Fp t1, t2;
FpDbl d1, d2;
Fp::addPre(t1, b, b); // 2b
FpDbl::mulPre(d2, t1, a); // 2ab
Fp::addPre(t1, a, b); // a + b
Fp::sub(t2, a, b); // a - b
FpDbl::mulPre(d1, t1, t2); // (a + b)(a - b)
FpDbl::mod(py[0], d1);
FpDbl::mod(py[1], d2);
#endif
}
/*
xi = xi_a + i
x = a + bi
y = (a + bi)xi = (a + bi)(xi_a + i)
=(a * x_ia - b) + (a + b xi_a)i
*/
static void fp2_mul_xiW(Unit *y, const Unit *x)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
Fp *py = reinterpret_cast<Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
Fp t;
Fp::mulUnit(t, a, xi_a_);
t -= b;
Fp::mulUnit(py[1], b, xi_a_);
py[1] += a;
py[0] = t;
}
/*
xi = 1 + i ; xi_a = 1
y = (a + bi)xi = (a - b) + (a + b)i
*/
static void fp2_mul_xi_1_1i(Unit *y, const Unit *x)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
Fp *py = reinterpret_cast<Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
Fp t;
Fp::add(t, a, b);
Fp::sub(py[0], a, b);
py[1] = t;
}
/*
x = a + bi
1 / x = (a - bi) / (a^2 + b^2)
*/
static void fp2_invW(Unit *y, const Unit *x)
{
const Fp *px = reinterpret_cast<const Fp*>(x);
Fp *py = reinterpret_cast<Fp*>(y);
const Fp& a = px[0];
const Fp& b = px[1];
Fp aa, bb;
Fp::sqr(aa, a);
Fp::sqr(bb, b);
aa += bb;
Fp::inv(aa, aa); // aa = 1 / (a^2 + b^2)
Fp::mul(py[0], a, aa);
Fp::mul(py[1], b, aa);
Fp::neg(py[1], py[1]);
}
};
template<class Fp>
struct Fp2DblT {
// typedef fp::Unit Unit;
typedef FpDblT<Fp> FpDbl;
typedef Fp2T<Fp> Fp2;
FpDbl a, b;
static void add(Fp2DblT& z, const Fp2DblT& x, const Fp2DblT& y)
{
FpDbl::add(z.a, x.a, y.a);
FpDbl::add(z.b, x.b, y.b);
}
static void addPre(Fp2DblT& z, const Fp2DblT& x, const Fp2DblT& y)
{
FpDbl::addPre(z.a, x.a, y.a);
FpDbl::addPre(z.b, x.b, y.b);
}
static void sub(Fp2DblT& z, const Fp2DblT& x, const Fp2DblT& y)
{
FpDbl::sub(z.a, x.a, y.a);
FpDbl::sub(z.b, x.b, y.b);
}
static void subPre(Fp2DblT& z, const Fp2DblT& x, const Fp2DblT& y)
{
FpDbl::subPre(z.a, x.a, y.a);
FpDbl::subPre(z.b, x.b, y.b);
}
static void neg(Fp2DblT& y, const Fp2DblT& x)
{
FpDbl::neg(y.a, x.a);
FpDbl::neg(y.b, x.b);
}
static void mul_xi(Fp2DblT& y, const Fp2DblT& x)
{
const uint32_t xi_a = Fp2::get_xi_a();
if (xi_a == 1) {
FpDbl t;
FpDbl::add(t, x.a, x.b);
FpDbl::sub(y.a, x.a, x.b);
y.b = t;
} else {
FpDbl t;
FpDbl::mulUnit(t, x.a, xi_a);
FpDbl::sub(t, t, x.b);
FpDbl::mulUnit(y.b, x.b, xi_a);
FpDbl::add(y.b, y.b, x.a);
y.a = t;
}
}
static void sqrPre(Fp2DblT& y, const Fp2& x)
{
Fp t1, t2;
if (Fp::isFullBit()) {
Fp::add(t1, x.b, x.b); // 2b
Fp::add(t1, x.a, x.b); // a + b
} else {
Fp::addPre(t1, x.b, x.b); // 2b
Fp::addPre(t1, x.a, x.b); // a + b
}
FpDbl::mulPre(y.b, t1, x.a); // 2ab
Fp::sub(t2, x.a, x.b); // a - b
FpDbl::mulPre(y.a, t1, t2); // (a + b)(a - b)
}
static void mulPre(Fp2DblT& z, const Fp2& x, const Fp2& y)
{
const Fp& a = x.a;
const Fp& b = x.b;
const Fp& c = y.a;
const Fp& d = y.b;
if (Fp::isFullBit()) {
FpDbl BD;
Fp s, t;
Fp::add(s, a, b); // s = a + b
Fp::add(t, c, d); // t = c + d
FpDbl::mulPre(BD, b, d); // BD = bd
FpDbl::mulPre(z.a, a, c); // z.a = ac
FpDbl::mulPre(z.b, s, t); // z.b = st
FpDbl::sub(z.b, z.b, z.a); // z.b = st - ac
FpDbl::sub(z.b, z.b, BD); // z.b = st - ac - bd = ad + bc
FpDbl::sub(z.a, z.a, BD); // ac - bd
} else {
FpDbl BD;
Fp s, t;
Fp::addPre(s, a, b); // s = a + b
Fp::addPre(t, c, d); // t = c + d
FpDbl::mulPre(BD, b, d); // BD = bd
FpDbl::mulPre(z.a, a, c); // z.a = ac
FpDbl::mulPre(z.b, s, t); // z.b = st
FpDbl::subPre(z.b, z.b, z.a); // z.b = st - ac
FpDbl::subPre(z.b, z.b, BD); // z.b = st - ac - bd = ad + bc
FpDbl::sub(z.a, z.a, BD); // ac - bd
}
}
static void mod(Fp2& y, const Fp2DblT& x)
{
FpDbl::mod(y.a, x.a);
FpDbl::mod(y.b, x.b);
}
};
template<class Fp> uint32_t Fp2T<Fp>::xi_a_;
/*
Fp6T = Fp2[v] / (v^3 - xi)
x = a + b v + c v^2
*/
template<class Fp>
struct Fp6T : public fp::Operator<Fp6T<Fp> > {
typedef Fp2T<Fp> Fp2;
typedef Fp2DblT<Fp> Fp2Dbl;
Fp2 a, b, c;
Fp6T() { }
Fp6T(int64_t a) : a(a) , b(0) , c(0) { }
Fp6T(const Fp2& a, const Fp2& b, const Fp2& c) : a(a) , b(b) , c(c) { }
void clear()
{
a.clear();
b.clear();
c.clear();
}
Fp* getFp0() { return a.getFp0(); }
const Fp* getFp0() const { return a.getFp0(); }
Fp2* getFp2() { return &a; }
const Fp2* getFp2() const { return &a; }
bool isZero() const
{
return a.isZero() && b.isZero() && c.isZero();
}
bool operator==(const Fp6T& rhs) const
{
return a == rhs.a && b == rhs.b && c == rhs.c;
}
bool operator!=(const Fp6T& rhs) const { return !operator==(rhs); }
friend std::ostream& operator<<(std::ostream& os, const Fp6T& x)
{
const char *sep = Fp::getIoSeparator();
return os << x.a << sep << x.b << sep << x.c;
}
friend std::istream& operator>>(std::istream& is, Fp6T& x)
{
return is >> x.a >> x.b >> x.c;
}
static void add(Fp6T& z, const Fp6T& x, const Fp6T& y)
{
Fp2::add(z.a, x.a, y.a);
Fp2::add(z.b, x.b, y.b);
Fp2::add(z.c, x.c, y.c);
}
static void sub(Fp6T& z, const Fp6T& x, const Fp6T& y)
{
Fp2::sub(z.a, x.a, y.a);
Fp2::sub(z.b, x.b, y.b);
Fp2::sub(z.c, x.c, y.c);
}
static void neg(Fp6T& y, const Fp6T& x)
{
Fp2::neg(y.a, x.a);
Fp2::neg(y.b, x.b);
Fp2::neg(y.c, x.c);
}
/*
x = a + bv + cv^2, v^3 = xi
x^2 = (a^2 + 2bc xi) + (c^2 xi + 2ab)v + (b^2 + 2ac)v^2
b^2 + 2ac = (a + b + c)^2 - a^2 - 2bc - c^2 - 2ab
*/
static void sqr(Fp6T& y, const Fp6T& x)
{
Fp2 t1, t2, t3;
Fp2::mul(t1, x.a, x.b);
t1 += t1; // 2ab
Fp2::mul(t2, x.b, x.c);
t2 += t2; // 2bc
Fp2::sqr(t3, x.c); // c^2
Fp2::add(y.c, x.a, x.c); // a + c, destroy y.c
y.c += x.b; // a + b + c
Fp2::sqr(y.b, y.c); // (a + b + c)^2, destroy y.b
y.b -= t2; // (a + b + c)^2 - 2bc
Fp2::mul_xi(t2, t2); // 2bc xi
Fp2::sqr(y.a, x.a); // a^2, destroy y.a
y.b -= y.a; // (a + b + c)^2 - 2bc - a^2
y.a += t2; // a^2 + 2bc xi
Fp2::sub(y.c, y.b, t3); // (a + b + c)^2 - 2bc - a^2 - c^2
Fp2::mul_xi(y.b, t3); // c^2 xi
y.b += t1; // c^2 xi + 2ab
y.c -= t1; // b^2 + 2ac
}
/*
x = a + bv + cv^2, y = d + ev + fv^2, v^3 = xi
xy = (ad + (bf + ce)xi) + ((ae + bd) + cf xi)v + ((af + cd) + be)v^2
bf + ce = (b + c)(e + f) - be - cf
ae + bd = (a + b)(e + d) - ad - be
af + cd = (a + c)(d + f) - ad - cf
*/
static void mul(Fp6T& z, const Fp6T& x, const Fp6T& y)
{
//clk.begin();
const Fp2& a = x.a;
const Fp2& b = x.b;
const Fp2& c = x.c;
const Fp2& d = y.a;
const Fp2& e = y.b;
const Fp2& f = y.c;
#if 1
Fp2Dbl AD, BE, CF;
Fp2Dbl::mulPre(AD, a, d);
Fp2Dbl::mulPre(BE, b, e);
Fp2Dbl::mulPre(CF, c, f);
Fp2 t1, t2, t3, t4;
Fp2::add(t1, b, c);
Fp2::add(t2, e, f);
Fp2Dbl T1;
Fp2Dbl::mulPre(T1, t1, t2);
Fp2Dbl::sub(T1, T1, BE);
Fp2Dbl::sub(T1, T1, CF);
Fp2Dbl::mul_xi(T1, T1);
Fp2::add(t2, a, b);
Fp2::add(t3, e, d);
Fp2Dbl T2;
Fp2Dbl::mulPre(T2, t2, t3);
Fp2Dbl::sub(T2, T2, AD);
Fp2Dbl::sub(T2, T2, BE);
Fp2::add(t3, a, c);
Fp2::add(t4, d, f);
Fp2Dbl T3;
Fp2Dbl::mulPre(T3, t3, t4);
Fp2Dbl::sub(T3, T3, AD);
Fp2Dbl::sub(T3, T3, CF);
Fp2Dbl::add(AD, AD, T1);
Fp2Dbl::mod(z.a, AD);
Fp2Dbl::mul_xi(CF, CF);
Fp2Dbl::add(CF, CF, T2);
Fp2Dbl::mod(z.b, CF);
Fp2Dbl::add(T3, T3, BE);
Fp2Dbl::mod(z.c, T3);
#else
Fp2 ad, be, cf;
Fp2::mul(ad, a, d);
Fp2::mul(be, b, e);
Fp2::mul(cf, c, f);
Fp2 t1, t2, t3, t4;
Fp2::add(t1, b, c);
Fp2::add(t2, e, f);
t1 *= t2;
t1 -= be;
t1 -= cf;
Fp2::mul_xi(t1, t1);
Fp2::add(t2, a, b);
Fp2::add(t3, e, d);
t2 *= t3;
t2 -= ad;
t2 -= be;
Fp2::add(t3, a, c);
Fp2::add(t4, d, f);
t3 *= t4;
t3 -= ad;
t3 -= cf;
Fp2::add(z.a, ad, t1);
Fp2::mul_xi(z.b, cf);
z.b += t2;
Fp2::add(z.c, t3, be);
#endif
//clk.end();
}
/*
x = a + bv + cv^2, v^3 = xi
y = 1/x = p/q where
p = (a^2 - bc xi) + (c^2 xi - ab)v + (b^2 - ac)v^2
q = c^3 xi^2 + b(b^2 - 3ac)xi + a^3
= (a^2 - bc xi)a + ((c^2 xi - ab)c + (b^2 - ac)b) xi
*/
static void inv(Fp6T& y, const Fp6T& x)
{
const Fp2& a = x.a;
const Fp2& b = x.b;
const Fp2& c = x.c;
Fp2 aa, bb, cc, ab, bc, ac;
Fp2::sqr(aa, a);
Fp2::sqr(bb, b);
Fp2::sqr(cc, c);
Fp2::mul(ab, a, b);
Fp2::mul(bc, b, c);
Fp2::mul(ac, c, a);
Fp6T p;
Fp2::mul_xi(p.a, bc);
Fp2::sub(p.a, aa, p.a); // a^2 - bc xi
Fp2::mul_xi(p.b, cc);
p.b -= ab; // c^2 xi - ab
Fp2::sub(p.c, bb, ac); // b^2 - ac
Fp2 q, t;
Fp2::mul(q, p.b, c);
Fp2::mul(t, p.c, b);
q += t;
Fp2::mul_xi(q, q);
Fp2::mul(t, p.a, a);
q += t;
Fp2::inv(q, q);
Fp2::mul(y.a, p.a, q);
Fp2::mul(y.b, p.b, q);
Fp2::mul(y.c, p.c, q);
}
void normalize() {} // dummy
};
/*
Fp12T = Fp6[w] / (w^2 - v)
x = a + b w
*/
template<class Fp>
struct Fp12T : public fp::Operator<Fp12T<Fp> > {
typedef Fp2T<Fp> Fp2;
typedef Fp6T<Fp> Fp6;
Fp6 a, b;
Fp12T() {}
Fp12T(int64_t a) : a(a), b(0) {}
Fp12T(const Fp6& a, const Fp6& b) : a(a), b(b) {}
void clear()
{
a.clear();
b.clear();
}
Fp* getFp0() { return a.getFp0(); }
const Fp* getFp0() const { return a.getFp0(); }
Fp2* getFp2() { return a.getFp2(); }
const Fp2* getFp2() const { return a.getFp2(); }
void set(const Fp2& v0, const Fp2& v1, const Fp2& v2, const Fp2& v3, const Fp2& v4, const Fp2& v5)
{
a.set(v0, v1, v2);
b.set(v3, v4, v5);
}
bool isZero() const
{
return a.isZero() && b.isZero();
}
bool operator==(const Fp12T& rhs) const
{
return a == rhs.a && b == rhs.b;
}
bool operator!=(const Fp12T& rhs) const { return !operator==(rhs); }
static void add(Fp12T& z, const Fp12T& x, const Fp12T& y)
{
Fp6::add(z.a, x.a, y.a);
Fp6::add(z.b, x.b, y.b);
}
static void sub(Fp12T& z, const Fp12T& x, const Fp12T& y)
{
Fp6::sub(z.a, x.a, y.a);
Fp6::sub(z.b, x.b, y.b);
}
static void neg(Fp12T& z, const Fp12T& x)
{
Fp6::neg(z.a, x.a);
Fp6::neg(z.b, x.b);
}
/*
z = x v + y
in Fp6 : (a + bv + cv^2)v = cv^3 + av + bv^2 = cxi + av + bv^2
*/
static void mulVadd(Fp6& z, const Fp6& x, const Fp6& y)
{
Fp2 t;
Fp2::mul_xi(t, x.c);
Fp2::add(z.c, x.b, y.c);
Fp2::add(z.b, x.a, y.b);
Fp2::add(z.a, t, y.a);
}
/*
x = a + bw, y = c + dw, w^2 = v
z = xy = (a + bw)(c + dw) = (ac + bdv) + (ad + bc)w
ad+bc = (a + b)(c + d) - ac - bd
in Fp6 : (a + bv + cv^2)v = cv^3 + av + bv^2 = cxi + av + bv^2
*/
static void mul(Fp12T& z, const Fp12T& x, const Fp12T& y)
{
const Fp6& a = x.a;
const Fp6& b = x.b;
const Fp6& c = y.a;
const Fp6& d = y.b;
Fp6 t1, t2, ac, bd;
Fp6::add(t1, a, b);
Fp6::add(t2, c, d);
t1 *= t2; // (a + b)(c + d)
Fp6::mul(ac, a, c);
Fp6::mul(bd, b, d);
mulVadd(z.a, bd, ac);
t1 -= ac;
Fp6::sub(z.b, t1, bd);
}
/*
x = a + bw, w^2 = v
y = x^2 = (a + bw)^2 = (a^2 + b^2v) + 2abw
a^2 + b^2v = (a + b)(bv + a) - (abv + ab)
*/
static void sqr(Fp12T& y, const Fp12T& x)
{
const Fp6& a = x.a;
const Fp6& b = x.b;
Fp6 t0, t1;
Fp6::add(t0, a, b); // a + b
mulVadd(t1, b, a); // bv + a
t0 *= t1; // (a + b)(bv + a)
Fp6::mul(t1, a, b); // ab
Fp6::add(y.b, t1, t1); // 2ab
mulVadd(y.a, t1, t1); // abv + ab
Fp6::sub(y.a, t0, y.a);
}
/*
x = a + bw, w^2 = v
y = 1/x = (a - bw) / (a^2 - b^2v)
*/
static void inv(Fp12T& y, const Fp12T& x)
{
const Fp6& a = x.a;
const Fp6& b = x.b;
Fp6 t0, t1;
Fp6::sqr(t0, a);
Fp6::sqr(t1, b);
Fp2::mul_xi(t1.c, t1.c);
t0.a -= t1.c;
t0.b -= t1.a;
t0.c -= t1.b; // t0 = a^2 - b^2v
Fp6::inv(t0, t0);
Fp6::mul(y.a, x.a, t0);
Fp6::mul(y.b, x.b, t0);
Fp6::neg(y.b, y.b);
}
friend std::ostream& operator<<(std::ostream& os, const Fp12T& self)
{
return os << self.a << Fp::getIoSeparator() << self.b;
}
friend std::istream& operator>>(std::istream& is, Fp12T& self)
{
return is >> self.a >> self.b;
}
void normalize() {} // dummy
};
} // mcl
|