aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authoryangarbiter <yangarbiter@gmail.com>2015-02-23 15:22:53 +0800
committeryangarbiter <yangarbiter@gmail.com>2015-02-23 15:22:53 +0800
commit4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d (patch)
treee5343c029e14c9ef818c7cad1edab313cf46317b
parent9d1cccb7d5ca7331606718c2e63efa4eacb18ce6 (diff)
downloadmyoparasite-4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d.tar.gz
myoparasite-4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d.tar.zst
myoparasite-4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d.zip
clean up record.py a little
-rwxr-xr-xrecord.py19
1 files changed, 6 insertions, 13 deletions
diff --git a/record.py b/record.py
index 5a363c4..0b67143 100755
--- a/record.py
+++ b/record.py
@@ -11,15 +11,11 @@ import time
import threading
import struct
-import Classifier
+import Classifier
from sklearn.externals import joblib
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
-import code
-
-#scaler1 = StandardScaler()
-#scaler2 = StandardScaler()
buf = ""
class readdataThread (threading.Thread) :
@@ -33,10 +29,9 @@ class readdataThread (threading.Thread) :
buf += self.FILE.read (50 * 4)
def extract_feature (data1, data2):
- return np.concatenate((
- (np.absolute(np.fft.fft(data1))) ,
+ return np.concatenate((
+ (np.absolute(np.fft.fft(data1))) ,
(np.absolute(np.fft.fft(data2))) ) ).tolist()
-
def getdata (raw) :
data1 = []
@@ -52,7 +47,6 @@ def getdata (raw) :
m = 1
return data1, data2
-
def record () :
labels = range(Classifier.NUM_OF_LABELS-1, -1, -1) * 15
# random.shuffle(labels)
@@ -82,6 +76,7 @@ def record () :
rawdata1.append(data1)
rawdata2.append(data2)
+ f.close()
f = open ("rawdata", "w")
f.write (json.dumps (zip(labels, rawdata1, rawdata2)))
@@ -109,7 +104,7 @@ def train(rawdata1, rawdata2, y):
x1[i: i+Classifier.WINDOW_SIZE],
x2[i: i+Classifier.WINDOW_SIZE]) )
# X.append(x1[i: i+Classifier.WINDOW_SIZE])
- # X.append( np.concatenate((
+ # X.append( np.concatenate((
# np.absolute(np.fft.fft(x1[i: i+Classifier.WINDOW_SIZE])) ,
# np.absolute(np.fft.fft(x2[i: i+Classifier.WINDOW_SIZE])) ) ).tolist())
y_2.append( yi )
@@ -133,7 +128,7 @@ def predict (scalers, classifiers, scores) :
proc = subprocess.Popen (shcmd, stdout = subprocess.PIPE, shell = True)
read_thread = readdataThread (proc.stdout)
read_thread.start ()
-
+
count = 0
p = [0] * Classifier.NUM_OF_LABELS
while True :
@@ -154,8 +149,6 @@ def predict (scalers, classifiers, scores) :
print (maj)
sys.stdout.flush ()
-
-
read_thread.join ()