diff options
author | yangarbiter <yangarbiter@gmail.com> | 2015-02-23 15:22:53 +0800 |
---|---|---|
committer | yangarbiter <yangarbiter@gmail.com> | 2015-02-23 15:22:53 +0800 |
commit | 4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d (patch) | |
tree | e5343c029e14c9ef818c7cad1edab313cf46317b | |
parent | 9d1cccb7d5ca7331606718c2e63efa4eacb18ce6 (diff) | |
download | myoparasite-4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d.tar.gz myoparasite-4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d.tar.zst myoparasite-4945db5bae25b94f2c9e80b8cc4e647ddc1b9a9d.zip |
clean up record.py a little
-rwxr-xr-x | record.py | 19 |
1 files changed, 6 insertions, 13 deletions
@@ -11,15 +11,11 @@ import time import threading import struct -import Classifier +import Classifier from sklearn.externals import joblib from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier -import code - -#scaler1 = StandardScaler() -#scaler2 = StandardScaler() buf = "" class readdataThread (threading.Thread) : @@ -33,10 +29,9 @@ class readdataThread (threading.Thread) : buf += self.FILE.read (50 * 4) def extract_feature (data1, data2): - return np.concatenate(( - (np.absolute(np.fft.fft(data1))) , + return np.concatenate(( + (np.absolute(np.fft.fft(data1))) , (np.absolute(np.fft.fft(data2))) ) ).tolist() - def getdata (raw) : data1 = [] @@ -52,7 +47,6 @@ def getdata (raw) : m = 1 return data1, data2 - def record () : labels = range(Classifier.NUM_OF_LABELS-1, -1, -1) * 15 # random.shuffle(labels) @@ -82,6 +76,7 @@ def record () : rawdata1.append(data1) rawdata2.append(data2) + f.close() f = open ("rawdata", "w") f.write (json.dumps (zip(labels, rawdata1, rawdata2))) @@ -109,7 +104,7 @@ def train(rawdata1, rawdata2, y): x1[i: i+Classifier.WINDOW_SIZE], x2[i: i+Classifier.WINDOW_SIZE]) ) # X.append(x1[i: i+Classifier.WINDOW_SIZE]) - # X.append( np.concatenate(( + # X.append( np.concatenate(( # np.absolute(np.fft.fft(x1[i: i+Classifier.WINDOW_SIZE])) , # np.absolute(np.fft.fft(x2[i: i+Classifier.WINDOW_SIZE])) ) ).tolist()) y_2.append( yi ) @@ -133,7 +128,7 @@ def predict (scalers, classifiers, scores) : proc = subprocess.Popen (shcmd, stdout = subprocess.PIPE, shell = True) read_thread = readdataThread (proc.stdout) read_thread.start () - + count = 0 p = [0] * Classifier.NUM_OF_LABELS while True : @@ -154,8 +149,6 @@ def predict (scalers, classifiers, scores) : print (maj) sys.stdout.flush () - - read_thread.join () |