1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
// Copyright 2018 The dexon-consensus Authors
// This file is part of the dexon-consensus library.
//
// The dexon-consensus library is free software: you can redistribute it
// and/or modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// The dexon-consensus library is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
// General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the dexon-consensus library. If not, see
// <http://www.gnu.org/licenses/>.
package simulation
import (
"context"
"encoding/json"
"fmt"
"log"
"reflect"
"sort"
"sync"
"time"
"github.com/dexon-foundation/dexon-consensus/common"
"github.com/dexon-foundation/dexon-consensus/core/test"
"github.com/dexon-foundation/dexon-consensus/core/types"
"github.com/dexon-foundation/dexon-consensus/simulation/config"
)
// PeerServer is the main object to collect results and monitor simulation.
type PeerServer struct {
peers map[types.NodeID]struct{}
msgChannel chan *test.TransportEnvelope
trans test.TransportServer
peerTotalOrder PeerTotalOrder
peerTotalOrderMu sync.Mutex
verifiedLen uint64
cfg *config.Config
ctx context.Context
ctxCancel context.CancelFunc
blockEvents map[types.NodeID]map[common.Hash][]time.Time
throughputRecords map[types.NodeID][]test.ThroughputRecord
}
// NewPeerServer returns a new PeerServer instance.
func NewPeerServer() *PeerServer {
ctx, cancel := context.WithCancel(context.Background())
return &PeerServer{
peers: make(map[types.NodeID]struct{}),
peerTotalOrder: make(PeerTotalOrder),
ctx: ctx,
ctxCancel: cancel,
blockEvents: make(map[types.NodeID]map[common.Hash][]time.Time),
throughputRecords: make(map[types.NodeID][]test.ThroughputRecord),
}
}
// isNode checks if nID is in p.peers. If peer server restarts but
// nodes are not, it will cause panic if nodes send message.
func (p *PeerServer) isNode(nID types.NodeID) bool {
_, exist := p.peers[nID]
return exist
}
// handleBlockList is the handler for messages with BlockList as payload.
func (p *PeerServer) handleBlockList(id types.NodeID, blocks *BlockList) {
p.peerTotalOrderMu.Lock()
defer p.peerTotalOrderMu.Unlock()
readyForVerify := p.peerTotalOrder[id].PushBlocks(*blocks)
if !readyForVerify {
return
}
// Verify the total order result.
go func(id types.NodeID) {
p.peerTotalOrderMu.Lock()
defer p.peerTotalOrderMu.Unlock()
var correct bool
var length int
p.peerTotalOrder, correct, length = VerifyTotalOrder(id, p.peerTotalOrder)
if !correct {
log.Printf("The result of Total Ordering Algorithm has error.\n")
}
p.verifiedLen += uint64(length)
if p.verifiedLen >= p.cfg.Node.MaxBlock {
if err := p.trans.Broadcast(
p.peers, &test.FixedLatencyModel{}, ntfShutdown); err != nil {
panic(err)
}
}
}(id)
}
// handleMessage is the handler for messages with Message as payload.
func (p *PeerServer) handleMessage(id types.NodeID, m *message) {
switch m.Type {
case shutdownAck:
delete(p.peers, id)
log.Printf("%v shutdown, %d remains.\n", id, len(p.peers))
if len(p.peers) == 0 {
p.ctxCancel()
}
case blockTimestamp:
msgs := []timestampMessage{}
if err := json.Unmarshal(m.Payload, &msgs); err != nil {
panic(err)
}
for _, msg := range msgs {
if ok := p.peerTotalOrder[id].PushTimestamp(msg); !ok {
panic(fmt.Errorf("unable to push timestamp: %v", m))
}
}
default:
panic(fmt.Errorf("unknown simulation message type: %v", m))
}
}
func (p *PeerServer) handleBlockEventMessage(
id types.NodeID, msg *test.BlockEventMessage) {
if _, exist := p.blockEvents[id]; !exist {
p.blockEvents[id] = make(map[common.Hash][]time.Time)
}
nodeEvents := p.blockEvents[id]
if _, exist := nodeEvents[msg.BlockHash]; !exist {
nodeEvents[msg.BlockHash] = []time.Time{}
}
nodeEvents[msg.BlockHash] = msg.Timestamps
}
func (p *PeerServer) handleThroughputData(
id types.NodeID, records *[]test.ThroughputRecord) {
p.throughputRecords[id] = append(p.throughputRecords[id], *records...)
}
func (p *PeerServer) mainLoop() {
for {
select {
case <-p.ctx.Done():
return
default:
}
select {
case <-p.ctx.Done():
return
case e := <-p.msgChannel:
if !p.isNode(e.From) {
break
}
// Handle messages based on their type.
switch val := e.Msg.(type) {
case *BlockList:
p.handleBlockList(e.From, val)
case *message:
p.handleMessage(e.From, val)
case *test.BlockEventMessage:
p.handleBlockEventMessage(e.From, val)
case *[]test.ThroughputRecord:
p.handleThroughputData(e.From, val)
default:
panic(fmt.Errorf("unknown message: %v", reflect.TypeOf(e.Msg)))
}
}
}
}
// Setup prepares simualtion.
func (p *PeerServer) Setup(
cfg *config.Config) (serverEndpoint interface{}, err error) {
dMoment := time.Now().UTC()
// Setup transport layer.
switch cfg.Networking.Type {
case "tcp", "tcp-local":
p.trans = test.NewTCPTransportServer(&jsonMarshaller{}, peerPort)
dMoment = dMoment.Add(10 * time.Second)
case "fake":
p.trans = test.NewFakeTransportServer()
default:
panic(fmt.Errorf("unknown network type: %v", cfg.Networking.Type))
}
p.trans.SetDMoment(dMoment)
p.msgChannel, err = p.trans.Host()
if err != nil {
return
}
p.cfg = cfg
serverEndpoint = p.msgChannel
return
}
// Run the simulation.
func (p *PeerServer) Run() {
if err := p.trans.WaitForPeers(p.cfg.Node.Num); err != nil {
panic(err)
}
// Cache peers' info.
for _, pubKey := range p.trans.Peers() {
nID := types.NewNodeID(pubKey)
p.peers[nID] = struct{}{}
}
// Pick a mater node to execute pending config changes.
for nID := range p.peers {
if err := p.trans.Send(nID, ntfSelectedAsMaster); err != nil {
panic(err)
}
break
}
// Wait for peers to report 'setupOK' message.
readyPeers := make(map[types.NodeID]struct{})
for {
e := <-p.msgChannel
if !p.isNode(e.From) {
break
}
msg := e.Msg.(*message)
if msg.Type != setupOK {
panic(fmt.Errorf("receive an unexpected peer report: %v", msg))
}
log.Println("receive setupOK message from", e.From)
readyPeers[e.From] = struct{}{}
if len(readyPeers) == len(p.peers) {
break
}
}
if err := p.trans.Broadcast(
p.peers, &test.FixedLatencyModel{}, ntfReady); err != nil {
panic(err)
}
log.Println("Simulation is ready to go with", len(p.peers), "nodes")
// Initialize total order result cache.
for id := range p.peers {
p.peerTotalOrder[id] = NewTotalOrderResult(id)
}
// Block to handle incoming messages.
p.mainLoop()
// The simulation is done, clean up.
LogStatus(p.peerTotalOrder)
if err := p.trans.Close(); err != nil {
log.Printf("Error shutting down peerServer: %v\n", err)
}
p.logBlockEvents()
p.logThroughputRecords()
}
func (p *PeerServer) logThroughputRecords() {
// Interval is the sample rate of calculating throughput data, the unit is
// nano second.
intervals := []int64{int64(time.Second), int64(100 * time.Millisecond)}
log.Println("======== throughput data ============")
for nid, records := range p.throughputRecords {
log.Printf("[Node %s]\n", nid)
msgTypes := []string{}
msgMap := make(map[string][]test.ThroughputRecord)
for _, record := range records {
msgMap[record.Type] = append(msgMap[record.Type], record)
}
for k := range msgMap {
msgTypes = append(msgTypes, k)
}
sort.Strings(msgTypes)
for _, interval := range intervals {
log.Printf(" %dms", interval/int64(time.Millisecond))
for _, msgType := range msgTypes {
sum := 0
startTime := msgMap[msgType][0].Time.UnixNano()
endTime := startTime
for _, record := range msgMap[msgType] {
sum += record.Size
t := record.Time.UnixNano()
// The receiving order might be different with sending order.
if t < startTime {
startTime = t
}
if t > endTime {
endTime = t
}
}
startIndex := startTime / interval
endIndex := endTime / interval
log.Printf(" %s (count: %d, size: %d)",
msgType, len(msgMap[msgType]), sum)
// A slot stores total throughput in the interval of that time. The
// index of slot of a specified time is calculated by deviding the
// interval and minusing the starting time. For example, start time is
// 5.5s, then time "7.123s"'s index of slot is
// 7123000000 / 100000000 - 55 = 71 - 55 = 16.
slots := make([]int, endIndex-startIndex+1)
for _, record := range msgMap[msgType] {
slots[record.Time.UnixNano()/interval-startIndex] += record.Size
}
mean, std := calculateMeanStdDeviationInts(slots)
log.Printf(" mean: %f, std: %f", mean, std)
min, med, max := getMinMedianMaxInts(slots)
log.Printf(" min: %d, med: %d, max: %d", min, med, max)
}
}
}
}
func (p *PeerServer) logBlockEvents() {
// diffs stores the difference between two consecutive event time.
diffs := [blockEventCount - 1][]float64{}
for _, blocks := range p.blockEvents {
for _, timestamps := range blocks {
for i := 0; i < blockEventCount-1; i++ {
diffs[i] = append(
diffs[i],
float64(timestamps[i+1].Sub(timestamps[i]))/1000000000,
)
}
}
}
log.Printf("======== block events (%d blocks) ============", len(diffs[0]))
for i, ary := range diffs {
mean, stdDeviation := calculateMeanStdDeviationFloat64s(ary)
min, med, max := getMinMedianMaxFloat64s(ary)
log.Printf(" event %d to %d", i, i+1)
log.Printf(" mean: %f, std dev = %f", mean, stdDeviation)
log.Printf(" min: %f, median: %f, max: %f", min, med, max)
}
}
|