diff options
-rw-r--r-- | packages/instant/src/index.umd.ts | 9 | ||||
-rw-r--r-- | packages/instant/src/util/maybe_big_number.ts | 11 | ||||
-rw-r--r-- | packages/instant/src/util/signed_order_coercion.ts | 41 | ||||
-rw-r--r-- | packages/instant/test/util/dependencies/prevbignumber.d.ts | 1772 | ||||
-rw-r--r-- | packages/instant/test/util/dependencies/prevbignumber.js | 2705 | ||||
-rw-r--r-- | packages/instant/test/util/maybe_big_number.test.ts | 71 |
6 files changed, 4584 insertions, 25 deletions
diff --git a/packages/instant/src/index.umd.ts b/packages/instant/src/index.umd.ts index 0c2ce5ec1..45913aa47 100644 --- a/packages/instant/src/index.umd.ts +++ b/packages/instant/src/index.umd.ts @@ -18,8 +18,8 @@ import { Network, OrderSource } from './types'; import { analytics } from './util/analytics'; import { assert } from './util/assert'; import { providerFactory } from './util/provider_factory'; +import { signedOrderCoercionUtil } from './util/signed_order_coercion'; import { util } from './util/util'; -import { coerceSignedOrderBigNumberOfString } from './util/signed_order_coercion' const isInstantRendered = (): boolean => !!document.getElementById(INJECTED_DIV_ID); @@ -94,13 +94,12 @@ export interface ZeroExInstantConfig extends ZeroExInstantOverlayProps { } export const render = (config: ZeroExInstantConfig, selector: string = DEFAULT_ZERO_EX_CONTAINER_SELECTOR) => { - validateInstantRenderConfig(config, selector); - - // TODO(David Sun) test functionality of order bignumber version coercion if (!_.isString(config.orderSource)) { - config.orderSource = config.orderSource.map(coerceSignedOrderBigNumberOfString); + config.orderSource = config.orderSource.map(signedOrderCoercionUtil.bigNumberCoercion); } + validateInstantRenderConfig(config, selector); + if (config.shouldDisablePushToHistory) { if (!isInstantRendered()) { renderInstant(config, selector); diff --git a/packages/instant/src/util/maybe_big_number.ts b/packages/instant/src/util/maybe_big_number.ts index f48473389..7e206a125 100644 --- a/packages/instant/src/util/maybe_big_number.ts +++ b/packages/instant/src/util/maybe_big_number.ts @@ -16,6 +16,17 @@ export const maybeBigNumberUtil = { return validBigNumber.isNaN() ? undefined : validBigNumber; }, + // converts a BigNumber or String to the BigNumber used by 0x libraries + bigNumberOrStringToMaybeBigNumber: (value: any): Maybe<BigNumber> => { + if (_.isString(value)) { + return maybeBigNumberUtil.stringToMaybeBigNumber(value); + } + // checks for pre v8 bignumber with member variable + if (BigNumber.isBigNumber(value) || value.isBigNumber) { + return new BigNumber(value.toString()); + } + return undefined; + }, areMaybeBigNumbersEqual: (val1: Maybe<BigNumber>, val2: Maybe<BigNumber>): boolean => { if (!_.isUndefined(val1) && !_.isUndefined(val2)) { return val1.isEqualTo(val2); diff --git a/packages/instant/src/util/signed_order_coercion.ts b/packages/instant/src/util/signed_order_coercion.ts index 649596a3d..4209e05e1 100644 --- a/packages/instant/src/util/signed_order_coercion.ts +++ b/packages/instant/src/util/signed_order_coercion.ts @@ -1,25 +1,26 @@ -import { BigNumber } from '@0x/asset-buyer'; import { SignedOrder } from '@0x/types'; +import { BigNumber } from '@0x/utils'; +import * as _ from 'lodash'; -export const coerceBigNumberOrString = (value: any): BigNumber => { - if (typeof value === 'string') { - return new BigNumber(value); - } - if (BigNumber.isBigNumber(value)) { - return new BigNumber(value.toString()); - } - return value; +import { maybeBigNumberUtil } from './maybe_big_number'; + +const coerceBigNumberOrString = (value: any): BigNumber => { + const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(value); + return !!bn ? bn : value; }; -// function implies that the signed order already has been invalidated -export const coerceSignedOrderBigNumberOfString = (order: SignedOrder): SignedOrder => { - return { - ...order, - makerFee: coerceBigNumberOrString(order.makerFee), - takerFee: coerceBigNumberOrString(order.takerFee), - makerAssetAmount: coerceBigNumberOrString(order.makerAssetAmount), - takerAssetAmount: coerceBigNumberOrString(order.takerAssetAmount), - salt: coerceBigNumberOrString(order.salt), - expirationTimeSeconds: coerceBigNumberOrString(order.expirationTimeSeconds), - }; +// function implies that the signed order already has been validated +export const signedOrderCoercionUtil = { + // coerces order big number values to the BigNumber version utilized by 0x + bigNumberCoercion: (order: SignedOrder): SignedOrder => { + return { + ...order, + makerFee: coerceBigNumberOrString(order.makerFee), + takerFee: coerceBigNumberOrString(order.takerFee), + makerAssetAmount: coerceBigNumberOrString(order.makerAssetAmount), + takerAssetAmount: coerceBigNumberOrString(order.takerAssetAmount), + salt: coerceBigNumberOrString(order.salt), + expirationTimeSeconds: coerceBigNumberOrString(order.expirationTimeSeconds), + }; + }, }; diff --git a/packages/instant/test/util/dependencies/prevbignumber.d.ts b/packages/instant/test/util/dependencies/prevbignumber.d.ts new file mode 100644 index 000000000..9b802ec3e --- /dev/null +++ b/packages/instant/test/util/dependencies/prevbignumber.d.ts @@ -0,0 +1,1772 @@ +// Type definitions for bignumber.js >=6.0.0 +// Project: https://github.com/MikeMcl/bignumber.js +// Definitions by: Michael Mclaughlin <https://github.com/MikeMcl> +// Definitions: https://github.com/MikeMcl/bignumber.js + +// Documentation: http://mikemcl.github.io/bignumber.js/ +// +// Exports (available globally or when using import): +// +// class BigNumber (default export) +// type BigNumber.Constructor +// type BigNumber.Instance +// type BigNumber.ModuloMode +// type BigNumber.RoundingMOde +// type BigNumber.Value +// interface BigNumber.Config +// interface BigNumber.Format +// +// Example (alternative syntax commented-out): +// +// import {BigNumber} from "bignumber.js" +// //import BigNumber from "bignumber.js" +// +// let rm: BigNumber.RoundingMode = BigNumber.ROUND_UP; +// let f: BigNumber.Format = { decimalSeparator: ',' }; +// let c: BigNumber.Config = { DECIMAL_PLACES: 4, ROUNDING_MODE: rm, FORMAT: f }; +// BigNumber.config(c); +// +// let v: BigNumber.Value = '12345.6789'; +// let b: BigNumber = new BigNumber(v); +// //let b: BigNumber.Instance = new BigNumber(v); +// +// The use of compiler option `--strictNullChecks` is recommended. + + +type BigNumberConstructor = typeof BigNumber; +type BigNumberInstance = BigNumber; +type BigNumberModuloMode = BigNumberRoundingMode | 9; +type BigNumberRoundingMode = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8; +type BigNumberValue = string | number | BigNumber; + +/** + * See `BigNumber.config` and `BigNumber.clone`. + */ +interface BigNumberConfig { + + /** + * An integer, 0 to 1e+9. Default value: 20. + * + * The maximum number of decimal places of the result of operations involving division, i.e. + * division, square root and base conversion operations, and exponentiation when the exponent is + * negative. + * + * ```ts + * BigNumber.config({ DECIMAL_PLACES: 5 }) + * BigNumber.set({ DECIMAL_PLACES: 5 }) + * ``` + */ + DECIMAL_PLACES?: number; + + /** + * An integer, 0 to 8. Default value: `BigNumber.ROUND_HALF_UP` (4). + * + * The rounding mode used in operations that involve division (see `DECIMAL_PLACES`) and the + * default rounding mode of the `decimalPlaces`, `precision`, `toExponential`, `toFixed`, + * `toFormat` and `toPrecision` methods. + * + * The modes are available as enumerated properties of the BigNumber constructor. + * + * ```ts + * BigNumber.config({ ROUNDING_MODE: 0 }) + * BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP }) + * ``` + */ + ROUNDING_MODE?: BigNumberRoundingMode; + + /** + * An integer, 0 to 1e+9, or an array, [-1e+9 to 0, 0 to 1e+9]. + * Default value: `[-7, 20]`. + * + * The exponent value(s) at which `toString` returns exponential notation. + * + * If a single number is assigned, the value is the exponent magnitude. + * + * If an array of two numbers is assigned then the first number is the negative exponent value at + * and beneath which exponential notation is used, and the second number is the positive exponent + * value at and above which exponential notation is used. + * + * For example, to emulate JavaScript numbers in terms of the exponent values at which they begin + * to use exponential notation, use `[-7, 20]`. + * + * ```ts + * BigNumber.config({ EXPONENTIAL_AT: 2 }) + * new BigNumber(12.3) // '12.3' e is only 1 + * new BigNumber(123) // '1.23e+2' + * new BigNumber(0.123) // '0.123' e is only -1 + * new BigNumber(0.0123) // '1.23e-2' + * + * BigNumber.config({ EXPONENTIAL_AT: [-7, 20] }) + * new BigNumber(123456789) // '123456789' e is only 8 + * new BigNumber(0.000000123) // '1.23e-7' + * + * // Almost never return exponential notation: + * BigNumber.config({ EXPONENTIAL_AT: 1e+9 }) + * + * // Always return exponential notation: + * BigNumber.config({ EXPONENTIAL_AT: 0 }) + * ``` + * + * Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in + * normal notation and the `toExponential` method will always return a value in exponential form. + * Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal + * notation. + */ + EXPONENTIAL_AT?: number|[number, number]; + + /** + * An integer, magnitude 1 to 1e+9, or an array, [-1e+9 to -1, 1 to 1e+9]. + * Default value: `[-1e+9, 1e+9]`. + * + * The exponent value(s) beyond which overflow to Infinity and underflow to zero occurs. + * + * If a single number is assigned, it is the maximum exponent magnitude: values wth a positive + * exponent of greater magnitude become Infinity and those with a negative exponent of greater + * magnitude become zero. + * + * If an array of two numbers is assigned then the first number is the negative exponent limit and + * the second number is the positive exponent limit. + * + * For example, to emulate JavaScript numbers in terms of the exponent values at which they + * become zero and Infinity, use [-324, 308]. + * + * ```ts + * BigNumber.config({ RANGE: 500 }) + * BigNumber.config().RANGE // [ -500, 500 ] + * new BigNumber('9.999e499') // '9.999e+499' + * new BigNumber('1e500') // 'Infinity' + * new BigNumber('1e-499') // '1e-499' + * new BigNumber('1e-500') // '0' + * + * BigNumber.config({ RANGE: [-3, 4] }) + * new BigNumber(99999) // '99999' e is only 4 + * new BigNumber(100000) // 'Infinity' e is 5 + * new BigNumber(0.001) // '0.01' e is only -3 + * new BigNumber(0.0001) // '0' e is -4 + * ``` + * The largest possible magnitude of a finite BigNumber is 9.999...e+1000000000. + * The smallest possible magnitude of a non-zero BigNumber is 1e-1000000000. + */ + RANGE?: number|[number, number]; + + /** + * A boolean: `true` or `false`. Default value: `false`. + * + * The value that determines whether cryptographically-secure pseudo-random number generation is + * used. If `CRYPTO` is set to true then the random method will generate random digits using + * `crypto.getRandomValues` in browsers that support it, or `crypto.randomBytes` if using a + * version of Node.js that supports it. + * + * If neither function is supported by the host environment then attempting to set `CRYPTO` to + * `true` will fail and an exception will be thrown. + * + * If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is + * assumed to generate at least 30 bits of randomness). + * + * See `BigNumber.random`. + * + * ```ts + * BigNumber.config({ CRYPTO: true }) + * BigNumber.config().CRYPTO // true + * BigNumber.random() // 0.54340758610486147524 + * ``` + */ + CRYPTO?: boolean; + + /** + * An integer, 0 to 9. Default value: `BigNumber.ROUND_DOWN` (1). + * + * The modulo mode used when calculating the modulus: `a mod n`. + * The quotient, `q = a / n`, is calculated according to the `ROUNDING_MODE` that corresponds to + * the chosen `MODULO_MODE`. + * The remainder, `r`, is calculated as: `r = a - n * q`. + * + * The modes that are most commonly used for the modulus/remainder operation are shown in the + * following table. Although the other rounding modes can be used, they may not give useful + * results. + * + * Property | Value | Description + * :------------------|:------|:------------------------------------------------------------------ + * `ROUND_UP` | 0 | The remainder is positive if the dividend is negative. + * `ROUND_DOWN` | 1 | The remainder has the same sign as the dividend. + * | | Uses 'truncating division' and matches JavaScript's `%` operator . + * `ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor. + * | | This matches Python's `%` operator. + * `ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function. + * `EUCLID` | 9 | The remainder is always positive. + * | | Euclidian division: `q = sign(n) * floor(a / abs(n))` + * + * The rounding/modulo modes are available as enumerated properties of the BigNumber constructor. + * + * See `modulo`. + * + * ```ts + * BigNumber.config({ MODULO_MODE: BigNumber.EUCLID }) + * BigNumber.set({ MODULO_MODE: 9 }) // equivalent + * ``` + */ + MODULO_MODE?: BigNumberModuloMode; + + /** + * An integer, 0 to 1e+9. Default value: 0. + * + * The maximum precision, i.e. number of significant digits, of the result of the power operation + * - unless a modulus is specified. + * + * If set to 0, the number of significant digits will not be limited. + * + * See `exponentiatedBy`. + * + * ```ts + * BigNumber.config({ POW_PRECISION: 100 }) + * ``` + */ + POW_PRECISION?: number; + + /** + * An object including any number of the properties shown below. + * + * The object configures the format of the string returned by the `toFormat` method. + * The example below shows the properties of the object that are recognised, and + * their default values. + * + * Unlike the other configuration properties, the values of the properties of the `FORMAT` object + * will not be checked for validity - the existing object will simply be replaced by the object + * that is passed in. + * + * See `toFormat`. + * + * ```ts + * BigNumber.config({ + * FORMAT: { + * // the decimal separator + * decimalSeparator: '.', + * // the grouping separator of the integer part + * groupSeparator: ',', + * // the primary grouping size of the integer part + * groupSize: 3, + * // the secondary grouping size of the integer part + * secondaryGroupSize: 0, + * // the grouping separator of the fraction part + * fractionGroupSeparator: ' ', + * // the grouping size of the fraction part + * fractionGroupSize: 0 + * } + * }) + * ``` + */ + FORMAT?: BigNumberFormat; + + /** + * A string representing the alphabet used for base conversion. + * Default value: `'0123456789abcdefghijklmnopqrstuvwxyz'`. + * + * The length of the alphabet corresponds to the maximum value of the base argument that can be + * passed to the BigNumber constructor or `toString`. There is no maximum length, but it must be + * at least 2 characters long, and it must not contain a repeated character, or `'.'` - the + * decimal separator for all values whatever their base. + * + * ```ts + * // duodecimal (base 12) + * BigNumber.config({ ALPHABET: '0123456789TE' }) + * x = new BigNumber('T', 12) + * x.toString() // '10' + * x.toString(12) // 'T' + * ``` + */ + ALPHABET?: string; +} + + +/** + * See `FORMAT` and `toFormat`. + */ +interface BigNumberFormat { + + /** + * The decimal separator. + */ + decimalSeparator?: string; + + /** + * The grouping separator of the integer part. + */ + groupSeparator?: string; + + /** + * The primary grouping size of the integer part. + */ + groupSize?: number; + + /** + * The secondary grouping size of the integer part. + */ + secondaryGroupSize?: number; + + /** + * The grouping separator of the fraction part. + */ + fractionGroupSeparator?: string; + + /** + * The grouping size of the fraction part. + */ + fractionGroupSize?: number; +} + + +export declare class BigNumber { + + /** + * Used internally by the `BigNumber.isBigNumber` method. + */ + private readonly _isBigNumber: true; + + /** + * The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers. + */ + readonly c: number[]; + + /** + * The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000. + */ + readonly e: number; + + /** + * The sign of the value of this BigNumber, -1 or 1. + */ + readonly s: number; + + /** + * Returns a new instance of BigNumber with value `n`. + * + * Legitimate values for `n` include ±0, ±`Infinity` and `NaN`. + * + * Values of type number with more than 15 significant digits are considered invalid as calling + * `toString` or `valueOf` on such numbers may not result in the intended value. + * + * ```ts + * console.log( 823456789123456.3 ); // 823456789123456.2 + * ``` + * + * There is no limit to the number of digits of a value of type string (other than that of + * JavaScript's maximum array size). Decimal string values may be in exponential, as well as + * normal (fixed-point) notation. Non-decimal values must be in normal notation. + * + * String values in hexadecimal literal form, e.g. '0xff', are valid, as are string values with + * the octal and binary prefixs '0o' and '0b'. String values in octal literal form without the + * prefix will be interpreted as decimals, e.g. '011' is interpreted as 11, not 9. + * + * Values in any base may have fraction digits. + * + * If a base is specified, `n` is rounded according to the current `DECIMAL_PLACES` and + * `ROUNDING_MODE` settings. If base is omitted, or is `null` or `undefined`, base 10 is assumed. + * + * Throws an invalid `value` or `base`. + * + * ```ts + * x = new BigNumber(9) // '9' + * y = new BigNumber(x) // '9' + * + * // 'new' is optional + * BigNumber(435.345) // '435.345' + * + * new BigNumber('5032485723458348569331745.33434346346912144534543') + * new BigNumber('4.321e+4') // '43210' + * new BigNumber('-735.0918e-430') // '-7.350918e-428' + * new BigNumber(Infinity) // 'Infinity' + * new BigNumber(NaN) // 'NaN' + * new BigNumber('.5') // '0.5' + * new BigNumber('+2') // '2' + * new BigNumber(-10110100.1, 2) // '-180.5' + * new BigNumber(-0b10110100.1) // '-180.5' + * new BigNumber('123412421.234324', 5) // '607236.557696' + * new BigNumber('ff.8', 16) // '255.5' + * new BigNumber('0xff.8') // '255.5' + * + * // The following throws 'Not a base 2 number'. + * new BigNumber(9, 2) + * + * // The following throws 'Number primitive has more than 15 significant digits'. + * new BigNumber(96517860459076817.4395) + * + * // The following throws 'Not a number'. + * new BigNumber('blurgh') + * + * // A value is only rounded by the constructor if a base is specified. + * BigNumber.config({ DECIMAL_PLACES: 5 }) + * new BigNumber(1.23456789) // '1.23456789' + * new BigNumber(1.23456789, 10) // '1.23457' + * ``` + * + * @param n A numeric value. + * @param base The base of n, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`). + */ + constructor(n: BigNumberValue, base?: number); + + /** + * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this + * BigNumber. + * + * The return value is always exact and unrounded. + * + * ```ts + * x = new BigNumber(-0.8) + * x.absoluteValue() // '0.8' + * ``` + */ + absoluteValue(): BigNumber; + + /** + * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this + * BigNumber. + * + * The return value is always exact and unrounded. + * + * ```ts + * x = new BigNumber(-0.8) + * x.abs() // '0.8' + * ``` + */ + abs(): BigNumber; + + /** + * Returns | | + * :-------:|:--------------------------------------------------------------| + * 1 | If the value of this BigNumber is greater than the value of `n` + * -1 | If the value of this BigNumber is less than the value of `n` + * 0 | If this BigNumber and `n` have the same value + * `null` | If the value of either this BigNumber or `n` is `NaN` + * + * ```ts + * + * x = new BigNumber(Infinity) + * y = new BigNumber(5) + * x.comparedTo(y) // 1 + * x.comparedTo(x.minus(1)) // 0 + * y.comparedTo(NaN) // null + * y.comparedTo('110', 2) // -1 + * ``` + * @param n A numeric value. + * @param [base] The base of n. + */ + comparedTo(n: BigNumberValue, base?: number): number; + + /** + * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode + * `roundingMode` to a maximum of `decimalPlaces` decimal places. + * + * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of + * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is + * ±`Infinity` or `NaN`. + * + * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `decimalPlaces` or `roundingMode` is invalid. + * + * ```ts + * x = new BigNumber(1234.56) + * x.decimalPlaces() // 2 + * x.decimalPlaces(1) // '1234.6' + * x.decimalPlaces(2) // '1234.56' + * x.decimalPlaces(10) // '1234.56' + * x.decimalPlaces(0, 1) // '1234' + * x.decimalPlaces(0, 6) // '1235' + * x.decimalPlaces(1, 1) // '1234.5' + * x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN) // '1234.6' + * x // '1234.56' + * y = new BigNumber('9.9e-101') + * y.decimalPlaces() // 102 + * ``` + * + * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + decimalPlaces(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode + * `roundingMode` to a maximum of `decimalPlaces` decimal places. + * + * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of + * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is + * ±`Infinity` or `NaN`. + * + * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `decimalPlaces` or `roundingMode` is invalid. + * + * ```ts + * x = new BigNumber(1234.56) + * x.dp() // 2 + * x.dp(1) // '1234.6' + * x.dp(2) // '1234.56' + * x.dp(10) // '1234.56' + * x.dp(0, 1) // '1234' + * x.dp(0, 6) // '1235' + * x.dp(1, 1) // '1234.5' + * x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6' + * x // '1234.56' + * y = new BigNumber('9.9e-101') + * y.dp() // 102 + * ``` + * + * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + dp(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded + * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. + * + * ```ts + * x = new BigNumber(355) + * y = new BigNumber(113) + * x.dividedBy(y) // '3.14159292035398230088' + * x.dividedBy(5) // '71' + * x.dividedBy(47, 16) // '5' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + dividedBy(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded + * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. + * + * ```ts + * x = new BigNumber(355) + * y = new BigNumber(113) + * x.div(y) // '3.14159292035398230088' + * x.div(5) // '71' + * x.div(47, 16) // '5' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + div(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by + * `n`. + * + * ```ts + * x = new BigNumber(5) + * y = new BigNumber(3) + * x.dividedToIntegerBy(y) // '1' + * x.dividedToIntegerBy(0.7) // '7' + * x.dividedToIntegerBy('0.f', 16) // '5' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + dividedToIntegerBy(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by + * `n`. + * + * ```ts + * x = new BigNumber(5) + * y = new BigNumber(3) + * x.idiv(y) // '1' + * x.idiv(0.7) // '7' + * x.idiv('0.f', 16) // '5' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + idiv(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e. + * raised to the power `n`, and optionally modulo a modulus `m`. + * + * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and + * `ROUNDING_MODE` settings. + * + * As the number of digits of the result of the power operation can grow so large so quickly, + * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is + * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified). + * + * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant + * digits will be calculated, and that the method's performance will decrease dramatically for + * larger exponents. + * + * If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a + * fast modular exponentiation algorithm is used, otherwise if any of the values is not a positive + * integer the operation will simply be performed as `x.exponentiatedBy(n).modulo(m)` with a + * `POW_PRECISION` of 0. + * + * Throws if `n` is not a primitive number, or is not an integer, or is out of range. + * + * ```ts + * Math.pow(0.7, 2) // 0.48999999999999994 + * x = new BigNumber(0.7) + * x.exponentiatedBy(2) // '0.49' + * BigNumber(3).exponentiatedBy(-2) // '0.11111111111111111111' + * ``` + * + * @param n The exponent, an integer, -9007199254740991 to 9007199254740991. + * @param [m] The modulus, a positive integer. + */ + exponentiatedBy(n: number, m?: BigNumberValue): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e. + * raised to the power `n`, and optionally modulo a modulus `m`. + * + * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and + * `ROUNDING_MODE` settings. + * + * As the number of digits of the result of the power operation can grow so large so quickly, + * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is + * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified). + * + * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant + * digits will be calculated, and that the method's performance will decrease dramatically for + * larger exponents. + * + * If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a + * fast modular exponentiation algorithm is used, otherwise if any of the values is not a positive + * integer the operation will simply be performed as `x.exponentiatedBy(n).modulo(m)` with a + * `POW_PRECISION` of 0. + * + * Throws if `n` is not a primitive number or an integer, or is out of range. + * + * ```ts + * Math.pow(0.7, 2) // 0.48999999999999994 + * x = new BigNumber(0.7) + * x.pow(2) // '0.49' + * BigNumber(3).pow(-2) // '0.11111111111111111111' + * ``` + * + * @param n The exponent, an integer, -9007199254740991 to 9007199254740991. + * @param [m] The modulus, a positive integer. + */ + pow(n: number, m?: BigNumberValue): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using + * rounding mode `rm`. + * + * If `rm` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `rm` is invalid. + * + * ```ts + * x = new BigNumber(123.456) + * x.integerValue() // '123' + * x.integerValue(BigNumber.ROUND_CEIL) // '124' + * y = new BigNumber(-12.7) + * y.integerValue() // '-13' + * x.integerValue(BigNumber.ROUND_DOWN) // '-12' + * ``` + * + * @param {BigNumberRoundingMode} [rm] The roundng mode, an integer, 0 to 8. + */ + integerValue(rm?: BigNumberRoundingMode): BigNumber; + + /** + * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns + * `false`. + * + * As with JavaScript, `NaN` does not equal `NaN`. + * + * ```ts + * 0 === 1e-324 // true + * x = new BigNumber(0) + * x.isEqualTo('1e-324') // false + * BigNumber(-0).isEqualTo(x) // true ( -0 === 0 ) + * BigNumber(255).isEqualTo('ff', 16) // true + * + * y = new BigNumber(NaN) + * y.isEqualTo(NaN) // false + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + isEqualTo(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns + * `false`. + * + * As with JavaScript, `NaN` does not equal `NaN`. + * + * ```ts + * 0 === 1e-324 // true + * x = new BigNumber(0) + * x.eq('1e-324') // false + * BigNumber(-0).eq(x) // true ( -0 === 0 ) + * BigNumber(255).eq('ff', 16) // true + * + * y = new BigNumber(NaN) + * y.eq(NaN) // false + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + eq(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is a finite number, otherwise returns `false`. + * + * The only possible non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`. + * + * ```ts + * x = new BigNumber(1) + * x.isFinite() // true + * y = new BigNumber(Infinity) + * y.isFinite() // false + * ``` + */ + isFinite(): boolean; + + /** + * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise + * returns `false`. + * + * ```ts + * 0.1 > (0.3 - 0.2) // true + * x = new BigNumber(0.1) + * x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false + * BigNumber(0).isGreaterThan(x) // false + * BigNumber(11, 3).isGreaterThan(11.1, 2) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + isGreaterThan(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise + * returns `false`. + * + * ```ts + * 0.1 > (0.3 - 0 // true + * x = new BigNumber(0.1) + * x.gt(BigNumber(0.3).minus(0.2)) // false + * BigNumber(0).gt(x) // false + * BigNumber(11, 3).gt(11.1, 2) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + gt(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, + * otherwise returns `false`. + * + * ```ts + * (0.3 - 0.2) >= 0.1 // false + * x = new BigNumber(0.3).minus(0.2) + * x.isGreaterThanOrEqualTo(0.1) // true + * BigNumber(1).isGreaterThanOrEqualTo(x) // true + * BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + isGreaterThanOrEqualTo(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, + * otherwise returns `false`. + * + * ```ts + * (0.3 - 0.2) >= 0.1 // false + * x = new BigNumber(0.3).minus(0.2) + * x.gte(0.1) // true + * BigNumber(1).gte(x) // true + * BigNumber(10, 18).gte('i', 36) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + gte(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is an integer, otherwise returns `false`. + * + * ```ts + * x = new BigNumber(1) + * x.isInteger() // true + * y = new BigNumber(123.456) + * y.isInteger() // false + * ``` + */ + isInteger(): boolean; + + /** + * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns + * `false`. + * + * ```ts + * (0.3 - 0.2) < 0.1 // true + * x = new BigNumber(0.3).minus(0.2) + * x.isLessThan(0.1) // false + * BigNumber(0).isLessThan(x) // true + * BigNumber(11.1, 2).isLessThan(11, 3) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + isLessThan(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns + * `false`. + * + * ```ts + * (0.3 - 0.2) < 0.1 // true + * x = new BigNumber(0.3).minus(0.2) + * x.lt(0.1) // false + * BigNumber(0).lt(x) // true + * BigNumber(11.1, 2).lt(11, 3) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + lt(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`, + * otherwise returns `false`. + * + * ```ts + * 0.1 <= (0.3 - 0.2) // false + * x = new BigNumber(0.1) + * x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true + * BigNumber(-1).isLessThanOrEqualTo(x) // true + * BigNumber(10, 18).isLessThanOrEqualTo('i', 36) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + isLessThanOrEqualTo(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`, + * otherwise returns `false`. + * + * ```ts + * 0.1 <= (0.3 - 0.2) // false + * x = new BigNumber(0.1) + * x.lte(BigNumber(0.3).minus(0.2)) // true + * BigNumber(-1).lte(x) // true + * BigNumber(10, 18).lte('i', 36) // true + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + lte(n: BigNumberValue, base?: number): boolean; + + /** + * Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`. + * + * ```ts + * x = new BigNumber(NaN) + * x.isNaN() // true + * y = new BigNumber('Infinity') + * y.isNaN() // false + * ``` + */ + isNaN(): boolean; + + /** + * Returns `true` if the value of this BigNumber is negative, otherwise returns `false`. + * + * ```ts + * x = new BigNumber(-0) + * x.isNegative() // true + * y = new BigNumber(2) + * y.isNegative() // false + * ``` + */ + isNegative(): boolean; + + /** + * Returns `true` if the value of this BigNumber is positive, otherwise returns `false`. + * + * ```ts + * x = new BigNumber(-0) + * x.isPositive() // false + * y = new BigNumber(2) + * y.isPositive() // true + * ``` + */ + isPositive(): boolean; + + /** + * Returns `true` if the value of this BigNumber is zero or minus zero, otherwise returns `false`. + * + * ```ts + * x = new BigNumber(-0) + * x.isZero() // true + * ``` + */ + isZero(): boolean; + + /** + * Returns a BigNumber whose value is the value of this BigNumber minus `n`. + * + * The return value is always exact and unrounded. + * + * ```ts + * 0.3 - 0.1 // 0.19999999999999998 + * x = new BigNumber(0.3) + * x.minus(0.1) // '0.2' + * x.minus(0.6, 20) // '0' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + minus(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer + * remainder of dividing this BigNumber by `n`. + * + * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE` + * setting of this BigNumber constructor. If it is 1 (default value), the result will have the + * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the + * limits of double precision) and BigDecimal's `remainder` method. + * + * The return value is always exact and unrounded. + * + * See `MODULO_MODE` for a description of the other modulo modes. + * + * ```ts + * 1 % 0.9 // 0.09999999999999998 + * x = new BigNumber(1) + * x.modulo(0.9) // '0.1' + * y = new BigNumber(33) + * y.modulo('a', 33) // '3' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + modulo(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer + * remainder of dividing this BigNumber by `n`. + * + * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE` + * setting of this BigNumber constructor. If it is 1 (default value), the result will have the + * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the + * limits of double precision) and BigDecimal's `remainder` method. + * + * The return value is always exact and unrounded. + * + * See `MODULO_MODE` for a description of the other modulo modes. + * + * ```ts + * 1 % 0.9 // 0.09999999999999998 + * x = new BigNumber(1) + * x.mod(0.9) // '0.1' + * y = new BigNumber(33) + * y.mod('a', 33) // '3' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + mod(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`. + * + * The return value is always exact and unrounded. + * + * ```ts + * 0.6 * 3 // 1.7999999999999998 + * x = new BigNumber(0.6) + * y = x.multipliedBy(3) // '1.8' + * BigNumber('7e+500').multipliedBy(y) // '1.26e+501' + * x.multipliedBy('-a', 16) // '-6' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + multipliedBy(n: BigNumberValue, base?: number) : BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`. + * + * The return value is always exact and unrounded. + * + * ```ts + * 0.6 * 3 // 1.7999999999999998 + * x = new BigNumber(0.6) + * y = x.times(3) // '1.8' + * BigNumber('7e+500').times(y) // '1.26e+501' + * x.times('-a', 16) // '-6' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + times(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1. + * + * ```ts + * x = new BigNumber(1.8) + * x.negated() // '-1.8' + * y = new BigNumber(-1.3) + * y.negated() // '1.3' + * ``` + */ + negated(): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber plus `n`. + * + * The return value is always exact and unrounded. + * + * ```ts + * 0.1 + 0.2 // 0.30000000000000004 + * x = new BigNumber(0.1) + * y = x.plus(0.2) // '0.3' + * BigNumber(0.7).plus(x).plus(y) // '1' + * x.plus('0.1', 8) // '0.225' + * ``` + * + * @param n A numeric value. + * @param [base] The base of n. + */ + plus(n: BigNumberValue, base?: number): BigNumber; + + /** + * Returns the number of significant digits of the value of this BigNumber, or `null` if the value + * of this BigNumber is ±`Infinity` or `NaN`. + * + * If `includeZeros` is true then any trailing zeros of the integer part of the value of this + * BigNumber are counted as significant digits, otherwise they are not. + * + * Throws if `includeZeros` is invalid. + * + * ```ts + * x = new BigNumber(9876.54321) + * x.precision() // 9 + * y = new BigNumber(987000) + * y.precision(false) // 3 + * y.precision(true) // 6 + * ``` + * + * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count. + */ + precision(includeZeros?: boolean): number; + + /** + * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of + * `significantDigits` significant digits using rounding mode `roundingMode`. + * + * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used. + * + * Throws if `significantDigits` or `roundingMode` is invalid. + * + * ```ts + * x = new BigNumber(9876.54321) + * x.precision(6) // '9876.54' + * x.precision(6, BigNumber.ROUND_UP) // '9876.55' + * x.precision(2) // '9900' + * x.precision(2, 1) // '9800' + * x // '9876.54321' + * ``` + * + * @param significantDigits Significant digits, integer, 1 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + precision(significantDigits: number, roundingMode?: BigNumberRoundingMode): BigNumber; + + /** + * Returns the number of significant digits of the value of this BigNumber, + * or `null` if the value of this BigNumber is ±`Infinity` or `NaN`. + * + * If `includeZeros` is true then any trailing zeros of the integer part of + * the value of this BigNumber are counted as significant digits, otherwise + * they are not. + * + * Throws if `includeZeros` is invalid. + * + * ```ts + * x = new BigNumber(9876.54321) + * x.sd() // 9 + * y = new BigNumber(987000) + * y.sd(false) // 3 + * y.sd(true) // 6 + * ``` + * + * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count. + */ + sd(includeZeros?: boolean): number; + + /* + * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of + * `significantDigits` significant digits using rounding mode `roundingMode`. + * + * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used. + * + * Throws if `significantDigits` or `roundingMode` is invalid. + * + * ```ts + * x = new BigNumber(9876.54321) + * x.sd(6) // '9876.54' + * x.sd(6, BigNumber.ROUND_UP) // '9876.55' + * x.sd(2) // '9900' + * x.sd(2, 1) // '9800' + * x // '9876.54321' + * ``` + * + * @param significantDigits Significant digits, integer, 1 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + sd(significantDigits: number, roundingMode?: BigNumberRoundingMode): BigNumber; + + /** + * Returns a BigNumber whose value is the value of this BigNumber shifted by `n` places. + * + * The shift is of the decimal point, i.e. of powers of ten, and is to the left if `n` is negative + * or to the right if `n` is positive. + * + * The return value is always exact and unrounded. + * + * Throws if `n` is invalid. + * + * ```ts + * x = new BigNumber(1.23) + * x.shiftedBy(3) // '1230' + * x.shiftedBy(-3) // '0.00123' + * ``` + * + * @param n The shift value, integer, -9007199254740991 to 9007199254740991. + */ + shiftedBy(n: number): BigNumber; + + /** + * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded + * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. + * + * The return value will be correctly rounded, i.e. rounded as if the result was first calculated + * to an infinite number of correct digits before rounding. + * + * ```ts + * x = new BigNumber(16) + * x.squareRoot() // '4' + * y = new BigNumber(3) + * y.squareRoot() // '1.73205080756887729353' + * ``` + */ + squareRoot(): BigNumber; + + /** + * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded + * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings. + * + * The return value will be correctly rounded, i.e. rounded as if the result was first calculated + * to an infinite number of correct digits before rounding. + * + * ```ts + * x = new BigNumber(16) + * x.sqrt() // '4' + * y = new BigNumber(3) + * y.sqrt() // '1.73205080756887729353' + * ``` + */ + sqrt(): BigNumber; + + /** + * Returns a string representing the value of this BigNumber in exponential notation rounded using + * rounding mode `roundingMode` to `decimalPlaces` decimal places, i.e with one digit before the + * decimal point and `decimalPlaces` digits after it. + * + * If the value of this BigNumber in exponential notation has fewer than `decimalPlaces` fraction + * digits, the return value will be appended with zeros accordingly. + * + * If `decimalPlaces` is omitted, or is `null` or `undefined`, the number of digits after the + * decimal point defaults to the minimum number of digits necessary to represent the value + * exactly. + * + * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `decimalPlaces` or `roundingMode` is invalid. + * + * ```ts + * x = 45.6 + * y = new BigNumber(x) + * x.toExponential() // '4.56e+1' + * y.toExponential() // '4.56e+1' + * x.toExponential(0) // '5e+1' + * y.toExponential(0) // '5e+1' + * x.toExponential(1) // '4.6e+1' + * y.toExponential(1) // '4.6e+1' + * y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN) + * x.toExponential(3) // '4.560e+1' + * y.toExponential(3) // '4.560e+1' + * ``` + * + * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + toExponential(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): string; + + /** + * Returns a string representing the value of this BigNumber in normal (fixed-point) notation + * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`. + * + * If the value of this BigNumber in normal notation has fewer than `decimalPlaces` fraction + * digits, the return value will be appended with zeros accordingly. + * + * Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or + * equal to 10**21, this method will always return normal notation. + * + * If `decimalPlaces` is omitted or is `null` or `undefined`, the return value will be unrounded + * and in normal notation. This is also unlike `Number.prototype.toFixed`, which returns the value + * to zero decimal places. It is useful when normal notation is required and the current + * `EXPONENTIAL_AT` setting causes `toString` to return exponential notation. + * + * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `decimalPlaces` or `roundingMode` is invalid. + * + * ```ts + * x = 3.456 + * y = new BigNumber(x) + * x.toFixed() // '3' + * y.toFixed() // '3.456' + * y.toFixed(0) // '3' + * x.toFixed(2) // '3.46' + * y.toFixed(2) // '3.46' + * y.toFixed(2, 1) // '3.45' (ROUND_DOWN) + * x.toFixed(5) // '3.45600' + * y.toFixed(5) // '3.45600' + * ``` + * + * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + toFixed(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): string; + + /** + * Returns a string representing the value of this BigNumber in normal (fixed-point) notation + * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`, and formatted + * according to the properties of the `FORMAT` object. + * + * The properties of the `FORMAT` object are shown in the examples below. + * + * If `decimalPlaces` is omitted or is `null` or `undefined`, then the return value is not + * rounded to a fixed number of decimal places. + * + * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `decimalPlaces` or `roundingMode` is invalid. + * + * ```ts + * format = { + * decimalSeparator: '.', + * groupSeparator: ',', + * groupSize: 3, + * secondaryGroupSize: 0, + * fractionGroupSeparator: ' ', + * fractionGroupSize: 0 + * } + * BigNumber.config({ FORMAT: format }) + * + * x = new BigNumber('123456789.123456789') + * x.toFormat() // '123,456,789.123456789' + * x.toFormat(1) // '123,456,789.1' + * + * format.groupSeparator = ' ' + * format.fractionGroupSize = 5 + * x.toFormat() // '123 456 789.12345 6789' + * + * BigNumber.config({ + * FORMAT: { + * decimalSeparator: ',', + * groupSeparator: '.', + * groupSize: 3, + * secondaryGroupSize: 2 + * } + * }) + * + * x.toFormat(6) // '12.34.56.789,123' + * ``` + * + * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. + * @param [roundingMode] Rounding mode, integer, 0 to 8. + */ + toFormat(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): string; + + /** + * Returns a string array representing the value of this BigNumber as a simple fraction with an + * integer numerator and an integer denominator. The denominator will be a positive non-zero value + * less than or equal to `max_denominator`. + * + * If a maximum denominator, `max_denominator`, is not specified, or is `null` or `undefined`, the + * denominator will be the lowest value necessary to represent the number exactly. + * + * Throws if `max_denominator` is invalid. + * + * ```ts + * x = new BigNumber(1.75) + * x.toFraction() // '7, 4' + * + * pi = new BigNumber('3.14159265358') + * pi.toFraction() // '157079632679,50000000000' + * pi.toFraction(100000) // '312689, 99532' + * pi.toFraction(10000) // '355, 113' + * pi.toFraction(100) // '311, 99' + * pi.toFraction(10) // '22, 7' + * pi.toFraction(1) // '3, 1' + * ``` + * + * @param [max_denominator] The maximum denominator, integer, >= 1 and < Infinity. + */ + toFraction(max_denominator?: BigNumberValue): BigNumber[]; + + /** + * As `valueOf`. + */ + toJSON(): string; + + /** + * Returns the value of this BigNumber as a JavaScript primitive number. + * + * Using the unary plus operator gives the same result. + * + * ```ts + * x = new BigNumber(456.789) + * x.toNumber() // 456.789 + * +x // 456.789 + * + * y = new BigNumber('45987349857634085409857349856430985') + * y.toNumber() // 4.598734985763409e+34 + * + * z = new BigNumber(-0) + * 1 / z.toNumber() // -Infinity + * 1 / +z // -Infinity + * ``` + */ + toNumber(): number; + + /** + * Returns a string representing the value of this BigNumber rounded to `significantDigits` + * significant digits using rounding mode `roundingMode`. + * + * If `significantDigits` is less than the number of digits necessary to represent the integer + * part of the value in normal (fixed-point) notation, then exponential notation is used. + * + * If `significantDigits` is omitted, or is `null` or `undefined`, then the return value is the + * same as `n.toString()`. + * + * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used. + * + * Throws if `significantDigits` or `roundingMode` is invalid. + * + * ```ts + * x = 45.6 + * y = new BigNumber(x) + * x.toPrecision() // '45.6' + * y.toPrecision() // '45.6' + * x.toPrecision(1) // '5e+1' + * y.toPrecision(1) // '5e+1' + * y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP) + * y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN) + * x.toPrecision(5) // '45.600' + * y.toPrecision(5) // '45.600' + * ``` + * + * @param [significantDigits] Significant digits, integer, 1 to 1e+9. + * @param [roundingMode] Rounding mode, integer 0 to 8. + */ + toPrecision(significantDigits?: number, roundingMode?: BigNumberRoundingMode): string; + + /** + * Returns a string representing the value of this BigNumber in base `base`, or base 10 if `base` + * is omitted or is `null` or `undefined`. + * + * For bases above 10, and using the default base conversion alphabet (see `ALPHABET`), values + * from 10 to 35 are represented by a-z (the same as `Number.prototype.toString`). + * + * If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and + * `ROUNDING_MODE` settings, otherwise it is not. + * + * If a base is not specified, and this BigNumber has a positive exponent that is equal to or + * greater than the positive component of the current `EXPONENTIAL_AT` setting, or a negative + * exponent equal to or less than the negative component of the setting, then exponential notation + * is returned. + * + * If `base` is `null` or `undefined` it is ignored. + * + * Throws if `base` is invalid. + * + * ```ts + * x = new BigNumber(750000) + * x.toString() // '750000' + * BigNumber.config({ EXPONENTIAL_AT: 5 }) + * x.toString() // '7.5e+5' + * + * y = new BigNumber(362.875) + * y.toString(2) // '101101010.111' + * y.toString(9) // '442.77777777777777777778' + * y.toString(32) // 'ba.s' + * + * BigNumber.config({ DECIMAL_PLACES: 4 }); + * z = new BigNumber('1.23456789') + * z.toString() // '1.23456789' + * z.toString(10) // '1.2346' + * ``` + * + * @param [base] The base, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`). + */ + toString(base?: number): string; + + /** + * As `toString`, but does not accept a base argument and includes the minus sign for negative + * zero. + * + * ``ts + * x = new BigNumber('-0') + * x.toString() // '0' + * x.valueOf() // '-0' + * y = new BigNumber('1.777e+457') + * y.valueOf() // '1.777e+457' + * ``` + */ + valueOf(): string; + + /** + * Returns a new independent BigNumber constructor with configuration as described by `object`, or + * with the default configuration if object is `null` or `undefined`. + * + * Throws if `object` is not an object. + * + * ```ts + * BigNumber.config({ DECIMAL_PLACES: 5 }) + * BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) + * + * x = new BigNumber(1) + * y = new BN(1) + * + * x.div(3) // 0.33333 + * y.div(3) // 0.333333333 + * + * // BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to: + * BN = BigNumber.clone() + * BN.config({ DECIMAL_PLACES: 9 }) + * ``` + * + * @param [object] The configuration object. + */ + static clone(object?: BigNumberConfig): BigNumberConstructor; + + /** + * Configures the settings that apply to this BigNumber constructor. + * + * The configuration object, `object`, contains any number of the properties shown in the example + * below. + * + * Returns an object with the above properties and their current values. + * + * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the + * properties. + * + * ```ts + * BigNumber.config({ + * DECIMAL_PLACES: 40, + * ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL, + * EXPONENTIAL_AT: [-10, 20], + * RANGE: [-500, 500], + * CRYPTO: true, + * MODULO_MODE: BigNumber.ROUND_FLOOR, + * POW_PRECISION: 80, + * FORMAT: { + * groupSize: 3, + * groupSeparator: ' ', + * decimalSeparator: ',' + * }, + * ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_' + * }); + * + * BigNumber.config().DECIMAL_PLACES // 40 + * ``` + * + * @param object The configuration object. + */ + static config(object: BigNumberConfig): BigNumberConfig; + + /** + * Returns `true` if `value` is a BigNumber instance, otherwise returns `false`. + * + * ```ts + * x = 42 + * y = new BigNumber(x) + * + * BigNumber.isBigNumber(x) // false + * y instanceof BigNumber // true + * BigNumber.isBigNumber(y) // true + * + * BN = BigNumber.clone(); + * z = new BN(x) + * z instanceof BigNumber // false + * BigNumber.isBigNumber(z) // true + * ``` + * + * @param value The value to test. + */ + static isBigNumber(value: any): boolean; + + /** + * + * Returns a BigNumber whose value is the maximum of the arguments. + * + * Accepts either an argument list or an array of values. + * + * The return value is always exact and unrounded. + * + * ```ts + * x = new BigNumber('3257869345.0378653') + * BigNumber.maximum(4e9, x, '123456789.9') // '4000000000' + * + * arr = [12, '13', new BigNumber(14)] + * BigNumber.maximum(arr) // '14' + * ``` + * + * @param n A numeric value. + */ + static maximum(...n: BigNumberValue[]): BigNumber; + + /** + * Returns a BigNumber whose value is the maximum of the arguments. + * + * Accepts either an argument list or an array of values. + * + * The return value is always exact and unrounded. + * + * ```ts + * x = new BigNumber('3257869345.0378653') + * BigNumber.max(4e9, x, '123456789.9') // '4000000000' + * + * arr = [12, '13', new BigNumber(14)] + * BigNumber.max(arr) // '14' + * ``` + * + * @param n A numeric value. + */ + static max(...n: BigNumberValue[]): BigNumber; + + /** + * Returns a BigNumber whose value is the minimum of the arguments. + * + * Accepts either an argument list or an array of values. + * + * The return value is always exact and unrounded. + * + * ```ts + * x = new BigNumber('3257869345.0378653') + * BigNumber.minimum(4e9, x, '123456789.9') // '123456789.9' + * + * arr = [2, new BigNumber(-14), '-15.9999', -12] + * BigNumber.minimum(arr) // '-15.9999' + * ``` + * + * @param n A numeric value. + */ + static minimum(...n: BigNumberValue[]): BigNumber; + + /** + * Returns a BigNumber whose value is the minimum of the arguments. + * + * Accepts either an argument list or an array of values. + * + * The return value is always exact and unrounded. + * + * ```ts + * x = new BigNumber('3257869345.0378653') + * BigNumber.min(4e9, x, '123456789.9') // '123456789.9' + * + * arr = [2, new BigNumber(-14), '-15.9999', -12] + * BigNumber.min(arr) // '-15.9999' + * ``` + * + * @param n A numeric value. + */ + static min(...n: BigNumberValue[]): BigNumber; + + /** + * Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1. + * + * The return value will have `decimalPlaces` decimal places, or less if trailing zeros are + * produced. If `decimalPlaces` is omitted, the current `DECIMAL_PLACES` setting will be used. + * + * Depending on the value of this BigNumber constructor's `CRYPTO` setting and the support for the + * `crypto` object in the host environment, the random digits of the return value are generated by + * either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent + * browsers) or `crypto.randomBytes` (Node.js). + * + * If `CRYPTO` is true, i.e. one of the `crypto` methods is to be used, the value of a returned + * BigNumber should be cryptographically secure and statistically indistinguishable from a random + * value. + * + * Throws if `decimalPlaces` is invalid. + * + * ```ts + * BigNumber.config({ DECIMAL_PLACES: 10 }) + * BigNumber.random() // '0.4117936847' + * BigNumber.random(20) // '0.78193327636914089009' + * ``` + * + * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9. + */ + static random(decimalPlaces?: number): BigNumber; + + /** + * Configures the settings that apply to this BigNumber constructor. + * + * The configuration object, `object`, contains any number of the properties shown in the example + * below. + * + * Returns an object with the above properties and their current values. + * + * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the + * properties. + * + * ```ts + * BigNumber.set({ + * DECIMAL_PLACES: 40, + * ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL, + * EXPONENTIAL_AT: [-10, 20], + * RANGE: [-500, 500], + * CRYPTO: true, + * MODULO_MODE: BigNumber.ROUND_FLOOR, + * POW_PRECISION: 80, + * FORMAT: { + * groupSize: 3, + * groupSeparator: ' ', + * decimalSeparator: ',' + * }, + * ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_' + * }); + * + * BigNumber.set().DECIMAL_PLACES // 40 + * ``` + * + * @param object The configuration object. + */ + static set(object: BigNumberConfig): BigNumberConfig; + + /** + * Helps ES6 import. + */ + private static readonly default?: BigNumberConstructor; + + /** + * Helps ES6 import. + */ + private static readonly BigNumber?: BigNumberConstructor; + + /** + * Rounds away from zero. + */ + static readonly ROUND_UP: 0; + + /** + * Rounds towards zero. + */ + static readonly ROUND_DOWN: 1; + + /** + * Rounds towards Infinity. + */ + static readonly ROUND_CEIL: 2; + + /** + * Rounds towards -Infinity. + */ + static readonly ROUND_FLOOR: 3; + + /** + * Rounds towards nearest neighbour. If equidistant, rounds away from zero . + */ + static readonly ROUND_HALF_UP: 4; + + /** + * Rounds towards nearest neighbour. If equidistant, rounds towards zero. + */ + static readonly ROUND_HALF_DOWN: 5; + + /** + * Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour. + */ + static readonly ROUND_HALF_EVEN: 6; + + /** + * Rounds towards nearest neighbour. If equidistant, rounds towards Infinity. + */ + static readonly ROUND_HALF_CEIL: 7; + + /** + * Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity. + */ + static readonly ROUND_HALF_FLOOR: 8; + + /** + * See `MODULO_MODE`. + */ + static readonly EUCLID: 9; +} + + +export default BigNumber; + +export namespace BigNumber { + export type Config = BigNumberConfig; + export type Constructor = BigNumberConstructor; + export type Format = BigNumberFormat; + export type Instance = BigNumberInstance; + export type ModuloMode = BigNumberModuloMode; + export type RoundingMode = BigNumberRoundingMode; + export type Value = BigNumberValue; +} + +/** + * Browsers. + */ +declare global { + const BigNumber: BigNumberConstructor; + type BigNumber = BigNumberInstance; + + namespace BigNumber { + type Config = BigNumberConfig; + type Constructor = BigNumberConstructor; + type Format = BigNumberFormat; + type Instance = BigNumberInstance; + type ModuloMode = BigNumberModuloMode; + type RoundingMode = BigNumberRoundingMode; + type Value = BigNumberValue; + } +}
\ No newline at end of file diff --git a/packages/instant/test/util/dependencies/prevbignumber.js b/packages/instant/test/util/dependencies/prevbignumber.js new file mode 100644 index 000000000..e2d3f2146 --- /dev/null +++ b/packages/instant/test/util/dependencies/prevbignumber.js @@ -0,0 +1,2705 @@ +/* + * bignumber.js v6.0.0 + * A JavaScript library for arbitrary-precision arithmetic. + * https://github.com/MikeMcl/bignumber.js + * Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com> + * MIT Licensed. + * + * BigNumber.prototype methods | BigNumber methods + * | + * absoluteValue abs | clone + * comparedTo | config set + * decimalPlaces dp | DECIMAL_PLACES + * dividedBy div | ROUNDING_MODE + * dividedToIntegerBy idiv | EXPONENTIAL_AT + * exponentiatedBy pow | RANGE + * integerValue | CRYPTO + * isEqualTo eq | MODULO_MODE + * isFinite | POW_PRECISION + * isGreaterThan gt | FORMAT + * isGreaterThanOrEqualTo gte | ALPHABET + * isInteger | isBigNumber + * isLessThan lt | maximum max + * isLessThanOrEqualTo lte | minimum min + * isNaN | random + * isNegative | + * isPositive | + * isZero | + * minus | + * modulo mod | + * multipliedBy times | + * negated | + * plus | + * precision sd | + * shiftedBy | + * squareRoot sqrt | + * toExponential | + * toFixed | + * toFormat | + * toFraction | + * toJSON | + * toNumber | + * toPrecision | + * toString | + * valueOf | + * + */ + + +var BigNumber, + isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i, + + mathceil = Math.ceil, + mathfloor = Math.floor, + + bignumberError = '[BigNumber Error] ', + tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ', + + BASE = 1e14, + LOG_BASE = 14, + MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1 + // MAX_INT32 = 0x7fffffff, // 2^31 - 1 + POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13], + SQRT_BASE = 1e7, + + // EDITABLE + // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and + // the arguments to toExponential, toFixed, toFormat, and toPrecision. + MAX = 1E9; // 0 to MAX_INT32 + + +/* + * Create and return a BigNumber constructor. + */ +function clone(configObject) { + var div, convertBase, parseNumeric, + P = BigNumber.prototype, + ONE = new BigNumber(1), + + + //----------------------------- EDITABLE CONFIG DEFAULTS ------------------------------- + + + // The default values below must be integers within the inclusive ranges stated. + // The values can also be changed at run-time using BigNumber.set. + + // The maximum number of decimal places for operations involving division. + DECIMAL_PLACES = 20, // 0 to MAX + + // The rounding mode used when rounding to the above decimal places, and when using + // toExponential, toFixed, toFormat and toPrecision, and round (default value). + // UP 0 Away from zero. + // DOWN 1 Towards zero. + // CEIL 2 Towards +Infinity. + // FLOOR 3 Towards -Infinity. + // HALF_UP 4 Towards nearest neighbour. If equidistant, up. + // HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. + // HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. + // HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. + // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. + ROUNDING_MODE = 4, // 0 to 8 + + // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS] + + // The exponent value at and beneath which toString returns exponential notation. + // Number type: -7 + TO_EXP_NEG = -7, // 0 to -MAX + + // The exponent value at and above which toString returns exponential notation. + // Number type: 21 + TO_EXP_POS = 21, // 0 to MAX + + // RANGE : [MIN_EXP, MAX_EXP] + + // The minimum exponent value, beneath which underflow to zero occurs. + // Number type: -324 (5e-324) + MIN_EXP = -1e7, // -1 to -MAX + + // The maximum exponent value, above which overflow to Infinity occurs. + // Number type: 308 (1.7976931348623157e+308) + // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow. + MAX_EXP = 1e7, // 1 to MAX + + // Whether to use cryptographically-secure random number generation, if available. + CRYPTO = false, // true or false + + // The modulo mode used when calculating the modulus: a mod n. + // The quotient (q = a / n) is calculated according to the corresponding rounding mode. + // The remainder (r) is calculated as: r = a - n * q. + // + // UP 0 The remainder is positive if the dividend is negative, else is negative. + // DOWN 1 The remainder has the same sign as the dividend. + // This modulo mode is commonly known as 'truncated division' and is + // equivalent to (a % n) in JavaScript. + // FLOOR 3 The remainder has the same sign as the divisor (Python %). + // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function. + // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). + // The remainder is always positive. + // + // The truncated division, floored division, Euclidian division and IEEE 754 remainder + // modes are commonly used for the modulus operation. + // Although the other rounding modes can also be used, they may not give useful results. + MODULO_MODE = 1, // 0 to 9 + + // The maximum number of significant digits of the result of the exponentiatedBy operation. + // If POW_PRECISION is 0, there will be unlimited significant digits. + POW_PRECISION = 0, // 0 to MAX + + // The format specification used by the BigNumber.prototype.toFormat method. + FORMAT = { + decimalSeparator: '.', + groupSeparator: ',', + groupSize: 3, + secondaryGroupSize: 0, + fractionGroupSeparator: '\xA0', // non-breaking space + fractionGroupSize: 0 + }, + + // The alphabet used for base conversion. + // It must be at least 2 characters long, with no '.' or repeated character. + // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_' + ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz'; + + + //------------------------------------------------------------------------------------------ + + + // CONSTRUCTOR + + + /* + * The BigNumber constructor and exported function. + * Create and return a new instance of a BigNumber object. + * + * n {number|string|BigNumber} A numeric value. + * [b] {number} The base of n. Integer, 2 to ALPHABET.length inclusive. + */ + function BigNumber( n, b ) { + var alphabet, c, e, i, isNum, len, str, + x = this; + + // Enable constructor usage without new. + if ( !( x instanceof BigNumber ) ) { + + // Don't throw on constructor call without new (#81). + // '[BigNumber Error] Constructor call without new: {n}' + //throw Error( bignumberError + ' Constructor call without new: ' + n ); + return new BigNumber( n, b ); + } + + if ( b == null ) { + + // Duplicate. + if ( n instanceof BigNumber ) { + x.s = n.s; + x.e = n.e; + x.c = ( n = n.c ) ? n.slice() : n; + return; + } + + isNum = typeof n == 'number'; + + if ( isNum && n * 0 == 0 ) { + + // Use `1 / n` to handle minus zero also. + x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1; + + // Faster path for integers. + if ( n === ~~n ) { + for ( e = 0, i = n; i >= 10; i /= 10, e++ ); + x.e = e; + x.c = [n]; + return; + } + + str = n + ''; + } else { + if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, isNum ); + x.s = str.charCodeAt(0) == 45 ? ( str = str.slice(1), -1 ) : 1; + } + + } else { + + // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}' + intCheck( b, 2, ALPHABET.length, 'Base' ); + str = n + ''; + + // Allow exponential notation to be used with base 10 argument, while + // also rounding to DECIMAL_PLACES as with other bases. + if ( b == 10 ) { + x = new BigNumber( n instanceof BigNumber ? n : str ); + return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE ); + } + + isNum = typeof n == 'number'; + + if (isNum) { + + // Avoid potential interpretation of Infinity and NaN as base 44+ values. + if ( n * 0 != 0 ) return parseNumeric( x, str, isNum, b ); + + x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1; + + // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}' + if ( str.replace( /^0\.0*|\./, '' ).length > 15 ) { + throw Error + ( tooManyDigits + n ); + } + + // Prevent later check for length on converted number. + isNum = false; + } else { + x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; + + // Allow e.g. hexadecimal 'FF' as well as 'ff'. + if ( b > 10 && b < 37 ) str = str.toLowerCase(); + } + + alphabet = ALPHABET.slice( 0, b ); + e = i = 0; + + // Check that str is a valid base b number. + // Don't use RegExp so alphabet can contain special characters. + for ( len = str.length; i < len; i++ ) { + if ( alphabet.indexOf( c = str.charAt(i) ) < 0 ) { + if ( c == '.' ) { + + // If '.' is not the first character and it has not be found before. + if ( i > e ) { + e = len; + continue; + } + } + + return parseNumeric( x, n + '', isNum, b ); + } + } + + str = convertBase( str, b, 10, x.s ); + } + + // Decimal point? + if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' ); + + // Exponential form? + if ( ( i = str.search( /e/i ) ) > 0 ) { + + // Determine exponent. + if ( e < 0 ) e = i; + e += +str.slice( i + 1 ); + str = str.substring( 0, i ); + } else if ( e < 0 ) { + + // Integer. + e = str.length; + } + + // Determine leading zeros. + for ( i = 0; str.charCodeAt(i) === 48; i++ ); + + // Determine trailing zeros. + for ( len = str.length; str.charCodeAt(--len) === 48; ); + str = str.slice( i, len + 1 ); + + if (str) { + len = str.length; + + // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}' + if ( isNum && len > 15 && ( n > MAX_SAFE_INTEGER || n !== mathfloor(n) ) ) { + throw Error + ( tooManyDigits + ( x.s * n ) ); + } + + e = e - i - 1; + + // Overflow? + if ( e > MAX_EXP ) { + + // Infinity. + x.c = x.e = null; + + // Underflow? + } else if ( e < MIN_EXP ) { + + // Zero. + x.c = [ x.e = 0 ]; + } else { + x.e = e; + x.c = []; + + // Transform base + + // e is the base 10 exponent. + // i is where to slice str to get the first element of the coefficient array. + i = ( e + 1 ) % LOG_BASE; + if ( e < 0 ) i += LOG_BASE; + + if ( i < len ) { + if (i) x.c.push( +str.slice( 0, i ) ); + + for ( len -= LOG_BASE; i < len; ) { + x.c.push( +str.slice( i, i += LOG_BASE ) ); + } + + str = str.slice(i); + i = LOG_BASE - str.length; + } else { + i -= len; + } + + for ( ; i--; str += '0' ); + x.c.push( +str ); + } + } else { + + // Zero. + x.c = [ x.e = 0 ]; + } + } + + + // CONSTRUCTOR PROPERTIES + + + BigNumber.clone = clone; + + BigNumber.ROUND_UP = 0; + BigNumber.ROUND_DOWN = 1; + BigNumber.ROUND_CEIL = 2; + BigNumber.ROUND_FLOOR = 3; + BigNumber.ROUND_HALF_UP = 4; + BigNumber.ROUND_HALF_DOWN = 5; + BigNumber.ROUND_HALF_EVEN = 6; + BigNumber.ROUND_HALF_CEIL = 7; + BigNumber.ROUND_HALF_FLOOR = 8; + BigNumber.EUCLID = 9; + + + /* + * Configure infrequently-changing library-wide settings. + * + * Accept an object with the following optional properties (if the value of a property is + * a number, it must be an integer within the inclusive range stated): + * + * DECIMAL_PLACES {number} 0 to MAX + * ROUNDING_MODE {number} 0 to 8 + * EXPONENTIAL_AT {number|number[]} -MAX to MAX or [-MAX to 0, 0 to MAX] + * RANGE {number|number[]} -MAX to MAX (not zero) or [-MAX to -1, 1 to MAX] + * CRYPTO {boolean} true or false + * MODULO_MODE {number} 0 to 9 + * POW_PRECISION {number} 0 to MAX + * ALPHABET {string} A string of two or more unique characters, and not + * containing '.'. The empty string, null or undefined + * resets the alphabet to its default value. + * FORMAT {object} An object with some of the following properties: + * decimalSeparator {string} + * groupSeparator {string} + * groupSize {number} + * secondaryGroupSize {number} + * fractionGroupSeparator {string} + * fractionGroupSize {number} + * + * (The values assigned to the above FORMAT object properties are not checked for validity.) + * + * E.g. + * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 }) + * + * Ignore properties/parameters set to null or undefined, except for ALPHABET. + * + * Return an object with the properties current values. + */ + BigNumber.config = BigNumber.set = function (obj) { + var p, v; + + if ( obj != null ) { + + if ( typeof obj == 'object' ) { + + // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive. + // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}' + if ( obj.hasOwnProperty( p = 'DECIMAL_PLACES' ) ) { + v = obj[p]; + intCheck( v, 0, MAX, p ); + DECIMAL_PLACES = v; + } + + // ROUNDING_MODE {number} Integer, 0 to 8 inclusive. + // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}' + if ( obj.hasOwnProperty( p = 'ROUNDING_MODE' ) ) { + v = obj[p]; + intCheck( v, 0, 8, p ); + ROUNDING_MODE = v; + } + + // EXPONENTIAL_AT {number|number[]} + // Integer, -MAX to MAX inclusive or + // [integer -MAX to 0 inclusive, 0 to MAX inclusive]. + // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}' + if ( obj.hasOwnProperty( p = 'EXPONENTIAL_AT' ) ) { + v = obj[p]; + if ( isArray(v) ) { + intCheck( v[0], -MAX, 0, p ); + intCheck( v[1], 0, MAX, p ); + TO_EXP_NEG = v[0]; + TO_EXP_POS = v[1]; + } else { + intCheck( v, -MAX, MAX, p ); + TO_EXP_NEG = -( TO_EXP_POS = v < 0 ? -v : v ); + } + } + + // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or + // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive]. + // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}' + if ( obj.hasOwnProperty( p = 'RANGE' ) ) { + v = obj[p]; + if ( isArray(v) ) { + intCheck( v[0], -MAX, -1, p ); + intCheck( v[1], 1, MAX, p ); + MIN_EXP = v[0]; + MAX_EXP = v[1]; + } else { + intCheck( v, -MAX, MAX, p ); + if (v) { + MIN_EXP = -( MAX_EXP = v < 0 ? -v : v ); + } else { + throw Error + ( bignumberError + p + ' cannot be zero: ' + v ); + } + } + } + + // CRYPTO {boolean} true or false. + // '[BigNumber Error] CRYPTO not true or false: {v}' + // '[BigNumber Error] crypto unavailable' + if ( obj.hasOwnProperty( p = 'CRYPTO' ) ) { + v = obj[p]; + if ( v === !!v ) { + if (v) { + if ( typeof crypto != 'undefined' && crypto && + (crypto.getRandomValues || crypto.randomBytes) ) { + CRYPTO = v; + } else { + CRYPTO = !v; + throw Error + ( bignumberError + 'crypto unavailable' ); + } + } else { + CRYPTO = v; + } + } else { + throw Error + ( bignumberError + p + ' not true or false: ' + v ); + } + } + + // MODULO_MODE {number} Integer, 0 to 9 inclusive. + // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}' + if ( obj.hasOwnProperty( p = 'MODULO_MODE' ) ) { + v = obj[p]; + intCheck( v, 0, 9, p ); + MODULO_MODE = v; + } + + // POW_PRECISION {number} Integer, 0 to MAX inclusive. + // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}' + if ( obj.hasOwnProperty( p = 'POW_PRECISION' ) ) { + v = obj[p]; + intCheck( v, 0, MAX, p ); + POW_PRECISION = v; + } + + // FORMAT {object} + // '[BigNumber Error] FORMAT not an object: {v}' + if ( obj.hasOwnProperty( p = 'FORMAT' ) ) { + v = obj[p]; + if ( typeof v == 'object' ) FORMAT = v; + else throw Error + ( bignumberError + p + ' not an object: ' + v ); + } + + // ALPHABET {string} + // '[BigNumber Error] ALPHABET invalid: {v}' + if ( obj.hasOwnProperty( p = 'ALPHABET' ) ) { + v = obj[p]; + + // Disallow if only one character, or contains '.' or a repeated character. + if ( typeof v == 'string' && !/^.$|\.|(.).*\1/.test(v) ) { + ALPHABET = v; + } else { + throw Error + ( bignumberError + p + ' invalid: ' + v ); + } + } + + } else { + + // '[BigNumber Error] Object expected: {v}' + throw Error + ( bignumberError + 'Object expected: ' + obj ); + } + } + + return { + DECIMAL_PLACES: DECIMAL_PLACES, + ROUNDING_MODE: ROUNDING_MODE, + EXPONENTIAL_AT: [ TO_EXP_NEG, TO_EXP_POS ], + RANGE: [ MIN_EXP, MAX_EXP ], + CRYPTO: CRYPTO, + MODULO_MODE: MODULO_MODE, + POW_PRECISION: POW_PRECISION, + FORMAT: FORMAT, + ALPHABET: ALPHABET + }; + }; + + + /* + * Return true if v is a BigNumber instance, otherwise return false. + * + * v {any} + */ + BigNumber.isBigNumber = function (v) { + return v instanceof BigNumber || v && v._isBigNumber === true || false; + }; + + + /* + * Return a new BigNumber whose value is the maximum of the arguments. + * + * arguments {number|string|BigNumber} + */ + BigNumber.maximum = BigNumber.max = function () { + return maxOrMin( arguments, P.lt ); + }; + + + /* + * Return a new BigNumber whose value is the minimum of the arguments. + * + * arguments {number|string|BigNumber} + */ + BigNumber.minimum = BigNumber.min = function () { + return maxOrMin( arguments, P.gt ); + }; + + + /* + * Return a new BigNumber with a random value equal to or greater than 0 and less than 1, + * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing + * zeros are produced). + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}' + * '[BigNumber Error] crypto unavailable' + */ + BigNumber.random = (function () { + var pow2_53 = 0x20000000000000; + + // Return a 53 bit integer n, where 0 <= n < 9007199254740992. + // Check if Math.random() produces more than 32 bits of randomness. + // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits. + // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1. + var random53bitInt = (Math.random() * pow2_53) & 0x1fffff + ? function () { return mathfloor( Math.random() * pow2_53 ); } + : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) + + (Math.random() * 0x800000 | 0); }; + + return function (dp) { + var a, b, e, k, v, + i = 0, + c = [], + rand = new BigNumber(ONE); + + if ( dp == null ) dp = DECIMAL_PLACES; + else intCheck( dp, 0, MAX ); + + k = mathceil( dp / LOG_BASE ); + + if (CRYPTO) { + + // Browsers supporting crypto.getRandomValues. + if (crypto.getRandomValues) { + + a = crypto.getRandomValues( new Uint32Array( k *= 2 ) ); + + for ( ; i < k; ) { + + // 53 bits: + // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2) + // 11111 11111111 11111111 11111111 11100000 00000000 00000000 + // ((Math.pow(2, 32) - 1) >>> 11).toString(2) + // 11111 11111111 11111111 + // 0x20000 is 2^21. + v = a[i] * 0x20000 + (a[i + 1] >>> 11); + + // Rejection sampling: + // 0 <= v < 9007199254740992 + // Probability that v >= 9e15, is + // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251 + if ( v >= 9e15 ) { + b = crypto.getRandomValues( new Uint32Array(2) ); + a[i] = b[0]; + a[i + 1] = b[1]; + } else { + + // 0 <= v <= 8999999999999999 + // 0 <= (v % 1e14) <= 99999999999999 + c.push( v % 1e14 ); + i += 2; + } + } + i = k / 2; + + // Node.js supporting crypto.randomBytes. + } else if (crypto.randomBytes) { + + // buffer + a = crypto.randomBytes( k *= 7 ); + + for ( ; i < k; ) { + + // 0x1000000000000 is 2^48, 0x10000000000 is 2^40 + // 0x100000000 is 2^32, 0x1000000 is 2^24 + // 11111 11111111 11111111 11111111 11111111 11111111 11111111 + // 0 <= v < 9007199254740992 + v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) + + ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) + + ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6]; + + if ( v >= 9e15 ) { + crypto.randomBytes(7).copy( a, i ); + } else { + + // 0 <= (v % 1e14) <= 99999999999999 + c.push( v % 1e14 ); + i += 7; + } + } + i = k / 7; + } else { + CRYPTO = false; + throw Error + ( bignumberError + 'crypto unavailable' ); + } + } + + // Use Math.random. + if (!CRYPTO) { + + for ( ; i < k; ) { + v = random53bitInt(); + if ( v < 9e15 ) c[i++] = v % 1e14; + } + } + + k = c[--i]; + dp %= LOG_BASE; + + // Convert trailing digits to zeros according to dp. + if ( k && dp ) { + v = POWS_TEN[LOG_BASE - dp]; + c[i] = mathfloor( k / v ) * v; + } + + // Remove trailing elements which are zero. + for ( ; c[i] === 0; c.pop(), i-- ); + + // Zero? + if ( i < 0 ) { + c = [ e = 0 ]; + } else { + + // Remove leading elements which are zero and adjust exponent accordingly. + for ( e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE); + + // Count the digits of the first element of c to determine leading zeros, and... + for ( i = 1, v = c[0]; v >= 10; v /= 10, i++); + + // adjust the exponent accordingly. + if ( i < LOG_BASE ) e -= LOG_BASE - i; + } + + rand.e = e; + rand.c = c; + return rand; + }; + })(); + + + // PRIVATE FUNCTIONS + + + // Called by BigNumber and BigNumber.prototype.toString. + convertBase = ( function () { + var decimal = '0123456789'; + + /* + * Convert string of baseIn to an array of numbers of baseOut. + * Eg. toBaseOut('255', 10, 16) returns [15, 15]. + * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5]. + */ + function toBaseOut( str, baseIn, baseOut, alphabet ) { + var j, + arr = [0], + arrL, + i = 0, + len = str.length; + + for ( ; i < len; ) { + for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn ); + + arr[0] += alphabet.indexOf( str.charAt( i++ ) ); + + for ( j = 0; j < arr.length; j++ ) { + + if ( arr[j] > baseOut - 1 ) { + if ( arr[j + 1] == null ) arr[j + 1] = 0; + arr[j + 1] += arr[j] / baseOut | 0; + arr[j] %= baseOut; + } + } + } + + return arr.reverse(); + } + + // Convert a numeric string of baseIn to a numeric string of baseOut. + // If the caller is toString, we are converting from base 10 to baseOut. + // If the caller is BigNumber, we are converting from baseIn to base 10. + return function ( str, baseIn, baseOut, sign, callerIsToString ) { + var alphabet, d, e, k, r, x, xc, y, + i = str.indexOf( '.' ), + dp = DECIMAL_PLACES, + rm = ROUNDING_MODE; + + // Non-integer. + if ( i >= 0 ) { + k = POW_PRECISION; + + // Unlimited precision. + POW_PRECISION = 0; + str = str.replace( '.', '' ); + y = new BigNumber(baseIn); + x = y.pow( str.length - i ); + POW_PRECISION = k; + + // Convert str as if an integer, then restore the fraction part by dividing the + // result by its base raised to a power. + + y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e, '0' ), + 10, baseOut, decimal ); + y.e = y.c.length; + } + + // Convert the number as integer. + + xc = toBaseOut( str, baseIn, baseOut, callerIsToString + ? ( alphabet = ALPHABET, decimal ) + : ( alphabet = decimal, ALPHABET ) ); + + + // xc now represents str as an integer and converted to baseOut. e is the exponent. + e = k = xc.length; + + // Remove trailing zeros. + for ( ; xc[--k] == 0; xc.pop() ); + + // Zero? + if ( !xc[0] ) return alphabet.charAt(0); + + // Does str represent an integer? If so, no need for the division. + if ( i < 0 ) { + --e; + } else { + x.c = xc; + x.e = e; + + // The sign is needed for correct rounding. + x.s = sign; + x = div( x, y, dp, rm, baseOut ); + xc = x.c; + r = x.r; + e = x.e; + } + + // xc now represents str converted to baseOut. + + // THe index of the rounding digit. + d = e + dp + 1; + + // The rounding digit: the digit to the right of the digit that may be rounded up. + i = xc[d]; + + // Look at the rounding digits and mode to determine whether to round up. + + k = baseOut / 2; + r = r || d < 0 || xc[d + 1] != null; + + r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) + : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 || + rm == ( x.s < 0 ? 8 : 7 ) ); + + // If the index of the rounding digit is not greater than zero, or xc represents + // zero, then the result of the base conversion is zero or, if rounding up, a value + // such as 0.00001. + if ( d < 1 || !xc[0] ) { + + // 1^-dp or 0 + str = r ? toFixedPoint( alphabet.charAt(1), -dp, alphabet.charAt(0) ) + : alphabet.charAt(0); + } else { + + // Truncate xc to the required number of decimal places. + xc.length = d; + + // Round up? + if (r) { + + // Rounding up may mean the previous digit has to be rounded up and so on. + for ( --baseOut; ++xc[--d] > baseOut; ) { + xc[d] = 0; + + if ( !d ) { + ++e; + xc = [1].concat(xc); + } + } + } + + // Determine trailing zeros. + for ( k = xc.length; !xc[--k]; ); + + // E.g. [4, 11, 15] becomes 4bf. + for ( i = 0, str = ''; i <= k; str += alphabet.charAt( xc[i++] ) ); + + // Add leading zeros, decimal point and trailing zeros as required. + str = toFixedPoint( str, e, alphabet.charAt(0) ); + } + + // The caller will add the sign. + return str; + }; + })(); + + + // Perform division in the specified base. Called by div and convertBase. + div = (function () { + + // Assume non-zero x and k. + function multiply( x, k, base ) { + var m, temp, xlo, xhi, + carry = 0, + i = x.length, + klo = k % SQRT_BASE, + khi = k / SQRT_BASE | 0; + + for ( x = x.slice(); i--; ) { + xlo = x[i] % SQRT_BASE; + xhi = x[i] / SQRT_BASE | 0; + m = khi * xlo + xhi * klo; + temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry; + carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi; + x[i] = temp % base; + } + + if (carry) x = [carry].concat(x); + + return x; + } + + function compare( a, b, aL, bL ) { + var i, cmp; + + if ( aL != bL ) { + cmp = aL > bL ? 1 : -1; + } else { + + for ( i = cmp = 0; i < aL; i++ ) { + + if ( a[i] != b[i] ) { + cmp = a[i] > b[i] ? 1 : -1; + break; + } + } + } + return cmp; + } + + function subtract( a, b, aL, base ) { + var i = 0; + + // Subtract b from a. + for ( ; aL--; ) { + a[aL] -= i; + i = a[aL] < b[aL] ? 1 : 0; + a[aL] = i * base + a[aL] - b[aL]; + } + + // Remove leading zeros. + for ( ; !a[0] && a.length > 1; a.splice(0, 1) ); + } + + // x: dividend, y: divisor. + return function ( x, y, dp, rm, base ) { + var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0, + yL, yz, + s = x.s == y.s ? 1 : -1, + xc = x.c, + yc = y.c; + + // Either NaN, Infinity or 0? + if ( !xc || !xc[0] || !yc || !yc[0] ) { + + return new BigNumber( + + // Return NaN if either NaN, or both Infinity or 0. + !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN : + + // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0. + xc && xc[0] == 0 || !yc ? s * 0 : s / 0 + ); + } + + q = new BigNumber(s); + qc = q.c = []; + e = x.e - y.e; + s = dp + e + 1; + + if ( !base ) { + base = BASE; + e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE ); + s = s / LOG_BASE | 0; + } + + // Result exponent may be one less then the current value of e. + // The coefficients of the BigNumbers from convertBase may have trailing zeros. + for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ ); + + if ( yc[i] > ( xc[i] || 0 ) ) e--; + + if ( s < 0 ) { + qc.push(1); + more = true; + } else { + xL = xc.length; + yL = yc.length; + i = 0; + s += 2; + + // Normalise xc and yc so highest order digit of yc is >= base / 2. + + n = mathfloor( base / ( yc[0] + 1 ) ); + + // Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1. + // if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) { + if ( n > 1 ) { + yc = multiply( yc, n, base ); + xc = multiply( xc, n, base ); + yL = yc.length; + xL = xc.length; + } + + xi = yL; + rem = xc.slice( 0, yL ); + remL = rem.length; + + // Add zeros to make remainder as long as divisor. + for ( ; remL < yL; rem[remL++] = 0 ); + yz = yc.slice(); + yz = [0].concat(yz); + yc0 = yc[0]; + if ( yc[1] >= base / 2 ) yc0++; + // Not necessary, but to prevent trial digit n > base, when using base 3. + // else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15; + + do { + n = 0; + + // Compare divisor and remainder. + cmp = compare( yc, rem, yL, remL ); + + // If divisor < remainder. + if ( cmp < 0 ) { + + // Calculate trial digit, n. + + rem0 = rem[0]; + if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 ); + + // n is how many times the divisor goes into the current remainder. + n = mathfloor( rem0 / yc0 ); + + // Algorithm: + // 1. product = divisor * trial digit (n) + // 2. if product > remainder: product -= divisor, n-- + // 3. remainder -= product + // 4. if product was < remainder at 2: + // 5. compare new remainder and divisor + // 6. If remainder > divisor: remainder -= divisor, n++ + + if ( n > 1 ) { + + // n may be > base only when base is 3. + if (n >= base) n = base - 1; + + // product = divisor * trial digit. + prod = multiply( yc, n, base ); + prodL = prod.length; + remL = rem.length; + + // Compare product and remainder. + // If product > remainder. + // Trial digit n too high. + // n is 1 too high about 5% of the time, and is not known to have + // ever been more than 1 too high. + while ( compare( prod, rem, prodL, remL ) == 1 ) { + n--; + + // Subtract divisor from product. + subtract( prod, yL < prodL ? yz : yc, prodL, base ); + prodL = prod.length; + cmp = 1; + } + } else { + + // n is 0 or 1, cmp is -1. + // If n is 0, there is no need to compare yc and rem again below, + // so change cmp to 1 to avoid it. + // If n is 1, leave cmp as -1, so yc and rem are compared again. + if ( n == 0 ) { + + // divisor < remainder, so n must be at least 1. + cmp = n = 1; + } + + // product = divisor + prod = yc.slice(); + prodL = prod.length; + } + + if ( prodL < remL ) prod = [0].concat(prod); + + // Subtract product from remainder. + subtract( rem, prod, remL, base ); + remL = rem.length; + + // If product was < remainder. + if ( cmp == -1 ) { + + // Compare divisor and new remainder. + // If divisor < new remainder, subtract divisor from remainder. + // Trial digit n too low. + // n is 1 too low about 5% of the time, and very rarely 2 too low. + while ( compare( yc, rem, yL, remL ) < 1 ) { + n++; + + // Subtract divisor from remainder. + subtract( rem, yL < remL ? yz : yc, remL, base ); + remL = rem.length; + } + } + } else if ( cmp === 0 ) { + n++; + rem = [0]; + } // else cmp === 1 and n will be 0 + + // Add the next digit, n, to the result array. + qc[i++] = n; + + // Update the remainder. + if ( rem[0] ) { + rem[remL++] = xc[xi] || 0; + } else { + rem = [ xc[xi] ]; + remL = 1; + } + } while ( ( xi++ < xL || rem[0] != null ) && s-- ); + + more = rem[0] != null; + + // Leading zero? + if ( !qc[0] ) qc.splice(0, 1); + } + + if ( base == BASE ) { + + // To calculate q.e, first get the number of digits of qc[0]. + for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ ); + + round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more ); + + // Caller is convertBase. + } else { + q.e = e; + q.r = +more; + } + + return q; + }; + })(); + + + /* + * Return a string representing the value of BigNumber n in fixed-point or exponential + * notation rounded to the specified decimal places or significant digits. + * + * n: a BigNumber. + * i: the index of the last digit required (i.e. the digit that may be rounded up). + * rm: the rounding mode. + * id: 1 (toExponential) or 2 (toPrecision). + */ + function format( n, i, rm, id ) { + var c0, e, ne, len, str; + + if ( rm == null ) rm = ROUNDING_MODE; + else intCheck( rm, 0, 8 ); + + if ( !n.c ) return n.toString(); + + c0 = n.c[0]; + ne = n.e; + + if ( i == null ) { + str = coeffToString( n.c ); + str = id == 1 || id == 2 && ne <= TO_EXP_NEG + ? toExponential( str, ne ) + : toFixedPoint( str, ne, '0' ); + } else { + n = round( new BigNumber(n), i, rm ); + + // n.e may have changed if the value was rounded up. + e = n.e; + + str = coeffToString( n.c ); + len = str.length; + + // toPrecision returns exponential notation if the number of significant digits + // specified is less than the number of digits necessary to represent the integer + // part of the value in fixed-point notation. + + // Exponential notation. + if ( id == 1 || id == 2 && ( i <= e || e <= TO_EXP_NEG ) ) { + + // Append zeros? + for ( ; len < i; str += '0', len++ ); + str = toExponential( str, e ); + + // Fixed-point notation. + } else { + i -= ne; + str = toFixedPoint( str, e, '0' ); + + // Append zeros? + if ( e + 1 > len ) { + if ( --i > 0 ) for ( str += '.'; i--; str += '0' ); + } else { + i += e - len; + if ( i > 0 ) { + if ( e + 1 == len ) str += '.'; + for ( ; i--; str += '0' ); + } + } + } + } + + return n.s < 0 && c0 ? '-' + str : str; + } + + + // Handle BigNumber.max and BigNumber.min. + function maxOrMin( args, method ) { + var m, n, + i = 0; + + if ( isArray( args[0] ) ) args = args[0]; + m = new BigNumber( args[0] ); + + for ( ; ++i < args.length; ) { + n = new BigNumber( args[i] ); + + // If any number is NaN, return NaN. + if ( !n.s ) { + m = n; + break; + } else if ( method.call( m, n ) ) { + m = n; + } + } + + return m; + } + + + /* + * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP. + * Called by minus, plus and times. + */ + function normalise( n, c, e ) { + var i = 1, + j = c.length; + + // Remove trailing zeros. + for ( ; !c[--j]; c.pop() ); + + // Calculate the base 10 exponent. First get the number of digits of c[0]. + for ( j = c[0]; j >= 10; j /= 10, i++ ); + + // Overflow? + if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) { + + // Infinity. + n.c = n.e = null; + + // Underflow? + } else if ( e < MIN_EXP ) { + + // Zero. + n.c = [ n.e = 0 ]; + } else { + n.e = e; + n.c = c; + } + + return n; + } + + + // Handle values that fail the validity test in BigNumber. + parseNumeric = (function () { + var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i, + dotAfter = /^([^.]+)\.$/, + dotBefore = /^\.([^.]+)$/, + isInfinityOrNaN = /^-?(Infinity|NaN)$/, + whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g; + + return function ( x, str, isNum, b ) { + var base, + s = isNum ? str : str.replace( whitespaceOrPlus, '' ); + + // No exception on ±Infinity or NaN. + if ( isInfinityOrNaN.test(s) ) { + x.s = isNaN(s) ? null : s < 0 ? -1 : 1; + x.c = x.e = null; + } else { + if ( !isNum ) { + + // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i + s = s.replace( basePrefix, function ( m, p1, p2 ) { + base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8; + return !b || b == base ? p1 : m; + }); + + if (b) { + base = b; + + // E.g. '1.' to '1', '.1' to '0.1' + s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' ); + } + + if ( str != s ) return new BigNumber( s, base ); + } + + // '[BigNumber Error] Not a number: {n}' + // '[BigNumber Error] Not a base {b} number: {n}' + throw Error + ( bignumberError + 'Not a' + ( b ? ' base ' + b : '' ) + ' number: ' + str ); + } + } + })(); + + + /* + * Round x to sd significant digits using rounding mode rm. Check for over/under-flow. + * If r is truthy, it is known that there are more digits after the rounding digit. + */ + function round( x, sd, rm, r ) { + var d, i, j, k, n, ni, rd, + xc = x.c, + pows10 = POWS_TEN; + + // if x is not Infinity or NaN... + if (xc) { + + // rd is the rounding digit, i.e. the digit after the digit that may be rounded up. + // n is a base 1e14 number, the value of the element of array x.c containing rd. + // ni is the index of n within x.c. + // d is the number of digits of n. + // i is the index of rd within n including leading zeros. + // j is the actual index of rd within n (if < 0, rd is a leading zero). + out: { + + // Get the number of digits of the first element of xc. + for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ ); + i = sd - d; + + // If the rounding digit is in the first element of xc... + if ( i < 0 ) { + i += LOG_BASE; + j = sd; + n = xc[ ni = 0 ]; + + // Get the rounding digit at index j of n. + rd = n / pows10[ d - j - 1 ] % 10 | 0; + } else { + ni = mathceil( ( i + 1 ) / LOG_BASE ); + + if ( ni >= xc.length ) { + + if (r) { + + // Needed by sqrt. + for ( ; xc.length <= ni; xc.push(0) ); + n = rd = 0; + d = 1; + i %= LOG_BASE; + j = i - LOG_BASE + 1; + } else { + break out; + } + } else { + n = k = xc[ni]; + + // Get the number of digits of n. + for ( d = 1; k >= 10; k /= 10, d++ ); + + // Get the index of rd within n. + i %= LOG_BASE; + + // Get the index of rd within n, adjusted for leading zeros. + // The number of leading zeros of n is given by LOG_BASE - d. + j = i - LOG_BASE + d; + + // Get the rounding digit at index j of n. + rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0; + } + } + + r = r || sd < 0 || + + // Are there any non-zero digits after the rounding digit? + // The expression n % pows10[ d - j - 1 ] returns all digits of n to the right + // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714. + xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] ); + + r = rm < 4 + ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) + : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 && + + // Check whether the digit to the left of the rounding digit is odd. + ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 || + rm == ( x.s < 0 ? 8 : 7 ) ); + + if ( sd < 1 || !xc[0] ) { + xc.length = 0; + + if (r) { + + // Convert sd to decimal places. + sd -= x.e + 1; + + // 1, 0.1, 0.01, 0.001, 0.0001 etc. + xc[0] = pows10[ ( LOG_BASE - sd % LOG_BASE ) % LOG_BASE ]; + x.e = -sd || 0; + } else { + + // Zero. + xc[0] = x.e = 0; + } + + return x; + } + + // Remove excess digits. + if ( i == 0 ) { + xc.length = ni; + k = 1; + ni--; + } else { + xc.length = ni + 1; + k = pows10[ LOG_BASE - i ]; + + // E.g. 56700 becomes 56000 if 7 is the rounding digit. + // j > 0 means i > number of leading zeros of n. + xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0; + } + + // Round up? + if (r) { + + for ( ; ; ) { + + // If the digit to be rounded up is in the first element of xc... + if ( ni == 0 ) { + + // i will be the length of xc[0] before k is added. + for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ ); + j = xc[0] += k; + for ( k = 1; j >= 10; j /= 10, k++ ); + + // if i != k the length has increased. + if ( i != k ) { + x.e++; + if ( xc[0] == BASE ) xc[0] = 1; + } + + break; + } else { + xc[ni] += k; + if ( xc[ni] != BASE ) break; + xc[ni--] = 0; + k = 1; + } + } + } + + // Remove trailing zeros. + for ( i = xc.length; xc[--i] === 0; xc.pop() ); + } + + // Overflow? Infinity. + if ( x.e > MAX_EXP ) { + x.c = x.e = null; + + // Underflow? Zero. + } else if ( x.e < MIN_EXP ) { + x.c = [ x.e = 0 ]; + } + } + + return x; + } + + + // PROTOTYPE/INSTANCE METHODS + + + /* + * Return a new BigNumber whose value is the absolute value of this BigNumber. + */ + P.absoluteValue = P.abs = function () { + var x = new BigNumber(this); + if ( x.s < 0 ) x.s = 1; + return x; + }; + + + /* + * Return + * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b), + * -1 if the value of this BigNumber is less than the value of BigNumber(y, b), + * 0 if they have the same value, + * or null if the value of either is NaN. + */ + P.comparedTo = function ( y, b ) { + return compare( this, new BigNumber( y, b ) ); + }; + + + /* + * If dp is undefined or null or true or false, return the number of decimal places of the + * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN. + * + * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this + * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or + * ROUNDING_MODE if rm is omitted. + * + * [dp] {number} Decimal places: integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' + */ + P.decimalPlaces = P.dp = function ( dp, rm ) { + var c, n, v, + x = this; + + if ( dp != null ) { + intCheck( dp, 0, MAX ); + if ( rm == null ) rm = ROUNDING_MODE; + else intCheck( rm, 0, 8 ); + + return round( new BigNumber(x), dp + x.e + 1, rm ); + } + + if ( !( c = x.c ) ) return null; + n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE; + + // Subtract the number of trailing zeros of the last number. + if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- ); + if ( n < 0 ) n = 0; + + return n; + }; + + + /* + * n / 0 = I + * n / N = N + * n / I = 0 + * 0 / n = 0 + * 0 / 0 = N + * 0 / N = N + * 0 / I = 0 + * N / n = N + * N / 0 = N + * N / N = N + * N / I = N + * I / n = I + * I / 0 = I + * I / N = N + * I / I = N + * + * Return a new BigNumber whose value is the value of this BigNumber divided by the value of + * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE. + */ + P.dividedBy = P.div = function ( y, b ) { + return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE ); + }; + + + /* + * Return a new BigNumber whose value is the integer part of dividing the value of this + * BigNumber by the value of BigNumber(y, b). + */ + P.dividedToIntegerBy = P.idiv = function ( y, b ) { + return div( this, new BigNumber( y, b ), 0, 1 ); + }; + + + /* + * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b), + * otherwise return false. + */ + P.isEqualTo = P.eq = function ( y, b ) { + return compare( this, new BigNumber( y, b ) ) === 0; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer + * using rounding mode rm, or ROUNDING_MODE if rm is omitted. + * + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}' + */ + P.integerValue = function (rm) { + var n = new BigNumber(this); + if ( rm == null ) rm = ROUNDING_MODE; + else intCheck( rm, 0, 8 ); + return round( n, n.e + 1, rm ); + }; + + + /* + * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b), + * otherwise return false. + */ + P.isGreaterThan = P.gt = function ( y, b ) { + return compare( this, new BigNumber( y, b ) ) > 0; + }; + + + /* + * Return true if the value of this BigNumber is greater than or equal to the value of + * BigNumber(y, b), otherwise return false. + */ + P.isGreaterThanOrEqualTo = P.gte = function ( y, b ) { + return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0; + + }; + + + /* + * Return true if the value of this BigNumber is a finite number, otherwise return false. + */ + P.isFinite = function () { + return !!this.c; + }; + + + /* + * Return true if the value of this BigNumber is an integer, otherwise return false. + */ + P.isInteger = function () { + return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2; + }; + + + /* + * Return true if the value of this BigNumber is NaN, otherwise return false. + */ + P.isNaN = function () { + return !this.s; + }; + + + /* + * Return true if the value of this BigNumber is negative, otherwise return false. + */ + P.isNegative = function () { + return this.s < 0; + }; + + + /* + * Return true if the value of this BigNumber is positive, otherwise return false. + */ + P.isPositive = function () { + return this.s > 0; + }; + + + /* + * Return true if the value of this BigNumber is 0 or -0, otherwise return false. + */ + P.isZero = function () { + return !!this.c && this.c[0] == 0; + }; + + + /* + * Return true if the value of this BigNumber is less than the value of BigNumber(y, b), + * otherwise return false. + */ + P.isLessThan = P.lt = function ( y, b ) { + return compare( this, new BigNumber( y, b ) ) < 0; + }; + + + /* + * Return true if the value of this BigNumber is less than or equal to the value of + * BigNumber(y, b), otherwise return false. + */ + P.isLessThanOrEqualTo = P.lte = function ( y, b ) { + return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0; + }; + + + /* + * n - 0 = n + * n - N = N + * n - I = -I + * 0 - n = -n + * 0 - 0 = 0 + * 0 - N = N + * 0 - I = -I + * N - n = N + * N - 0 = N + * N - N = N + * N - I = N + * I - n = I + * I - 0 = I + * I - N = N + * I - I = N + * + * Return a new BigNumber whose value is the value of this BigNumber minus the value of + * BigNumber(y, b). + */ + P.minus = function ( y, b ) { + var i, j, t, xLTy, + x = this, + a = x.s; + + y = new BigNumber( y, b ); + b = y.s; + + // Either NaN? + if ( !a || !b ) return new BigNumber(NaN); + + // Signs differ? + if ( a != b ) { + y.s = -b; + return x.plus(y); + } + + var xe = x.e / LOG_BASE, + ye = y.e / LOG_BASE, + xc = x.c, + yc = y.c; + + if ( !xe || !ye ) { + + // Either Infinity? + if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN ); + + // Either zero? + if ( !xc[0] || !yc[0] ) { + + // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. + return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x : + + // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity + ROUNDING_MODE == 3 ? -0 : 0 ); + } + } + + xe = bitFloor(xe); + ye = bitFloor(ye); + xc = xc.slice(); + + // Determine which is the bigger number. + if ( a = xe - ye ) { + + if ( xLTy = a < 0 ) { + a = -a; + t = xc; + } else { + ye = xe; + t = yc; + } + + t.reverse(); + + // Prepend zeros to equalise exponents. + for ( b = a; b--; t.push(0) ); + t.reverse(); + } else { + + // Exponents equal. Check digit by digit. + j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b; + + for ( a = b = 0; b < j; b++ ) { + + if ( xc[b] != yc[b] ) { + xLTy = xc[b] < yc[b]; + break; + } + } + } + + // x < y? Point xc to the array of the bigger number. + if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s; + + b = ( j = yc.length ) - ( i = xc.length ); + + // Append zeros to xc if shorter. + // No need to add zeros to yc if shorter as subtract only needs to start at yc.length. + if ( b > 0 ) for ( ; b--; xc[i++] = 0 ); + b = BASE - 1; + + // Subtract yc from xc. + for ( ; j > a; ) { + + if ( xc[--j] < yc[j] ) { + for ( i = j; i && !xc[--i]; xc[i] = b ); + --xc[i]; + xc[j] += BASE; + } + + xc[j] -= yc[j]; + } + + // Remove leading zeros and adjust exponent accordingly. + for ( ; xc[0] == 0; xc.splice(0, 1), --ye ); + + // Zero? + if ( !xc[0] ) { + + // Following IEEE 754 (2008) 6.3, + // n - n = +0 but n - n = -0 when rounding towards -Infinity. + y.s = ROUNDING_MODE == 3 ? -1 : 1; + y.c = [ y.e = 0 ]; + return y; + } + + // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity + // for finite x and y. + return normalise( y, xc, ye ); + }; + + + /* + * n % 0 = N + * n % N = N + * n % I = n + * 0 % n = 0 + * -0 % n = -0 + * 0 % 0 = N + * 0 % N = N + * 0 % I = 0 + * N % n = N + * N % 0 = N + * N % N = N + * N % I = N + * I % n = N + * I % 0 = N + * I % N = N + * I % I = N + * + * Return a new BigNumber whose value is the value of this BigNumber modulo the value of + * BigNumber(y, b). The result depends on the value of MODULO_MODE. + */ + P.modulo = P.mod = function ( y, b ) { + var q, s, + x = this; + + y = new BigNumber( y, b ); + + // Return NaN if x is Infinity or NaN, or y is NaN or zero. + if ( !x.c || !y.s || y.c && !y.c[0] ) { + return new BigNumber(NaN); + + // Return x if y is Infinity or x is zero. + } else if ( !y.c || x.c && !x.c[0] ) { + return new BigNumber(x); + } + + if ( MODULO_MODE == 9 ) { + + // Euclidian division: q = sign(y) * floor(x / abs(y)) + // r = x - qy where 0 <= r < abs(y) + s = y.s; + y.s = 1; + q = div( x, y, 0, 3 ); + y.s = s; + q.s *= s; + } else { + q = div( x, y, 0, MODULO_MODE ); + } + + return x.minus( q.times(y) ); + }; + + + /* + * n * 0 = 0 + * n * N = N + * n * I = I + * 0 * n = 0 + * 0 * 0 = 0 + * 0 * N = N + * 0 * I = N + * N * n = N + * N * 0 = N + * N * N = N + * N * I = N + * I * n = I + * I * 0 = N + * I * N = N + * I * I = I + * + * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value + * of BigNumber(y, b). + */ + P.multipliedBy = P.times = function ( y, b ) { + var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc, + base, sqrtBase, + x = this, + xc = x.c, + yc = ( y = new BigNumber( y, b ) ).c; + + // Either NaN, ±Infinity or ±0? + if ( !xc || !yc || !xc[0] || !yc[0] ) { + + // Return NaN if either is NaN, or one is 0 and the other is Infinity. + if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) { + y.c = y.e = y.s = null; + } else { + y.s *= x.s; + + // Return ±Infinity if either is ±Infinity. + if ( !xc || !yc ) { + y.c = y.e = null; + + // Return ±0 if either is ±0. + } else { + y.c = [0]; + y.e = 0; + } + } + + return y; + } + + e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE ); + y.s *= x.s; + xcL = xc.length; + ycL = yc.length; + + // Ensure xc points to longer array and xcL to its length. + if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i; + + // Initialise the result array with zeros. + for ( i = xcL + ycL, zc = []; i--; zc.push(0) ); + + base = BASE; + sqrtBase = SQRT_BASE; + + for ( i = ycL; --i >= 0; ) { + c = 0; + ylo = yc[i] % sqrtBase; + yhi = yc[i] / sqrtBase | 0; + + for ( k = xcL, j = i + k; j > i; ) { + xlo = xc[--k] % sqrtBase; + xhi = xc[k] / sqrtBase | 0; + m = yhi * xlo + xhi * ylo; + xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c; + c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi; + zc[j--] = xlo % base; + } + + zc[j] = c; + } + + if (c) { + ++e; + } else { + zc.splice(0, 1); + } + + return normalise( y, zc, e ); + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber negated, + * i.e. multiplied by -1. + */ + P.negated = function () { + var x = new BigNumber(this); + x.s = -x.s || null; + return x; + }; + + + /* + * n + 0 = n + * n + N = N + * n + I = I + * 0 + n = n + * 0 + 0 = 0 + * 0 + N = N + * 0 + I = I + * N + n = N + * N + 0 = N + * N + N = N + * N + I = N + * I + n = I + * I + 0 = I + * I + N = N + * I + I = I + * + * Return a new BigNumber whose value is the value of this BigNumber plus the value of + * BigNumber(y, b). + */ + P.plus = function ( y, b ) { + var t, + x = this, + a = x.s; + + y = new BigNumber( y, b ); + b = y.s; + + // Either NaN? + if ( !a || !b ) return new BigNumber(NaN); + + // Signs differ? + if ( a != b ) { + y.s = -b; + return x.minus(y); + } + + var xe = x.e / LOG_BASE, + ye = y.e / LOG_BASE, + xc = x.c, + yc = y.c; + + if ( !xe || !ye ) { + + // Return ±Infinity if either ±Infinity. + if ( !xc || !yc ) return new BigNumber( a / 0 ); + + // Either zero? + // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. + if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 ); + } + + xe = bitFloor(xe); + ye = bitFloor(ye); + xc = xc.slice(); + + // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts. + if ( a = xe - ye ) { + if ( a > 0 ) { + ye = xe; + t = yc; + } else { + a = -a; + t = xc; + } + + t.reverse(); + for ( ; a--; t.push(0) ); + t.reverse(); + } + + a = xc.length; + b = yc.length; + + // Point xc to the longer array, and b to the shorter length. + if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a; + + // Only start adding at yc.length - 1 as the further digits of xc can be ignored. + for ( a = 0; b; ) { + a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0; + xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE; + } + + if (a) { + xc = [a].concat(xc); + ++ye; + } + + // No need to check for zero, as +x + +y != 0 && -x + -y != 0 + // ye = MAX_EXP + 1 possible + return normalise( y, xc, ye ); + }; + + + /* + * If sd is undefined or null or true or false, return the number of significant digits of + * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN. + * If sd is true include integer-part trailing zeros in the count. + * + * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this + * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or + * ROUNDING_MODE if rm is omitted. + * + * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive. + * boolean: whether to count integer-part trailing zeros: true or false. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}' + */ + P.precision = P.sd = function ( sd, rm ) { + var c, n, v, + x = this; + + if ( sd != null && sd !== !!sd ) { + intCheck( sd, 1, MAX ); + if ( rm == null ) rm = ROUNDING_MODE; + else intCheck( rm, 0, 8 ); + + return round( new BigNumber(x), sd, rm ); + } + + if ( !( c = x.c ) ) return null; + v = c.length - 1; + n = v * LOG_BASE + 1; + + if ( v = c[v] ) { + + // Subtract the number of trailing zeros of the last element. + for ( ; v % 10 == 0; v /= 10, n-- ); + + // Add the number of digits of the first element. + for ( v = c[0]; v >= 10; v /= 10, n++ ); + } + + if ( sd && x.e + 1 > n ) n = x.e + 1; + + return n; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber shifted by k places + * (powers of 10). Shift to the right if n > 0, and to the left if n < 0. + * + * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}' + */ + P.shiftedBy = function (k) { + intCheck( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER ); + return this.times( '1e' + k ); + }; + + + /* + * sqrt(-n) = N + * sqrt( N) = N + * sqrt(-I) = N + * sqrt( I) = I + * sqrt( 0) = 0 + * sqrt(-0) = -0 + * + * Return a new BigNumber whose value is the square root of the value of this BigNumber, + * rounded according to DECIMAL_PLACES and ROUNDING_MODE. + */ + P.squareRoot = P.sqrt = function () { + var m, n, r, rep, t, + x = this, + c = x.c, + s = x.s, + e = x.e, + dp = DECIMAL_PLACES + 4, + half = new BigNumber('0.5'); + + // Negative/NaN/Infinity/zero? + if ( s !== 1 || !c || !c[0] ) { + return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 ); + } + + // Initial estimate. + s = Math.sqrt( +x ); + + // Math.sqrt underflow/overflow? + // Pass x to Math.sqrt as integer, then adjust the exponent of the result. + if ( s == 0 || s == 1 / 0 ) { + n = coeffToString(c); + if ( ( n.length + e ) % 2 == 0 ) n += '0'; + s = Math.sqrt(n); + e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 ); + + if ( s == 1 / 0 ) { + n = '1e' + e; + } else { + n = s.toExponential(); + n = n.slice( 0, n.indexOf('e') + 1 ) + e; + } + + r = new BigNumber(n); + } else { + r = new BigNumber( s + '' ); + } + + // Check for zero. + // r could be zero if MIN_EXP is changed after the this value was created. + // This would cause a division by zero (x/t) and hence Infinity below, which would cause + // coeffToString to throw. + if ( r.c[0] ) { + e = r.e; + s = e + dp; + if ( s < 3 ) s = 0; + + // Newton-Raphson iteration. + for ( ; ; ) { + t = r; + r = half.times( t.plus( div( x, t, dp, 1 ) ) ); + + if ( coeffToString( t.c ).slice( 0, s ) === ( n = + coeffToString( r.c ) ).slice( 0, s ) ) { + + // The exponent of r may here be one less than the final result exponent, + // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits + // are indexed correctly. + if ( r.e < e ) --s; + n = n.slice( s - 3, s + 1 ); + + // The 4th rounding digit may be in error by -1 so if the 4 rounding digits + // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the + // iteration. + if ( n == '9999' || !rep && n == '4999' ) { + + // On the first iteration only, check to see if rounding up gives the + // exact result as the nines may infinitely repeat. + if ( !rep ) { + round( t, t.e + DECIMAL_PLACES + 2, 0 ); + + if ( t.times(t).eq(x) ) { + r = t; + break; + } + } + + dp += 4; + s += 4; + rep = 1; + } else { + + // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact + // result. If not, then there are further digits and m will be truthy. + if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) { + + // Truncate to the first rounding digit. + round( r, r.e + DECIMAL_PLACES + 2, 1 ); + m = !r.times(r).eq(x); + } + + break; + } + } + } + } + + return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m ); + }; + + + /* + * Return a string representing the value of this BigNumber in exponential notation and + * rounded using ROUNDING_MODE to dp fixed decimal places. + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' + */ + P.toExponential = function ( dp, rm ) { + if ( dp != null ) { + intCheck( dp, 0, MAX ); + dp++; + } + return format( this, dp, rm, 1 ); + }; + + + /* + * Return a string representing the value of this BigNumber in fixed-point notation rounding + * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted. + * + * Note: as with JavaScript's number type, (-0).toFixed(0) is '0', + * but e.g. (-0.00001).toFixed(0) is '-0'. + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' + */ + P.toFixed = function ( dp, rm ) { + if ( dp != null ) { + intCheck( dp, 0, MAX ); + dp = dp + this.e + 1; + } + return format( this, dp, rm ); + }; + + + /* + * Return a string representing the value of this BigNumber in fixed-point notation rounded + * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties + * of the FORMAT object (see BigNumber.set). + * + * FORMAT = { + * decimalSeparator : '.', + * groupSeparator : ',', + * groupSize : 3, + * secondaryGroupSize : 0, + * fractionGroupSeparator : '\xA0', // non-breaking space + * fractionGroupSize : 0 + * }; + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' + */ + P.toFormat = function ( dp, rm ) { + var str = this.toFixed( dp, rm ); + + if ( this.c ) { + var i, + arr = str.split('.'), + g1 = +FORMAT.groupSize, + g2 = +FORMAT.secondaryGroupSize, + groupSeparator = FORMAT.groupSeparator, + intPart = arr[0], + fractionPart = arr[1], + isNeg = this.s < 0, + intDigits = isNeg ? intPart.slice(1) : intPart, + len = intDigits.length; + + if (g2) i = g1, g1 = g2, g2 = i, len -= i; + + if ( g1 > 0 && len > 0 ) { + i = len % g1 || g1; + intPart = intDigits.substr( 0, i ); + + for ( ; i < len; i += g1 ) { + intPart += groupSeparator + intDigits.substr( i, g1 ); + } + + if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i); + if (isNeg) intPart = '-' + intPart; + } + + str = fractionPart + ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize ) + ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ), + '$&' + FORMAT.fractionGroupSeparator ) + : fractionPart ) + : intPart; + } + + return str; + }; + + + /* + * Return a string array representing the value of this BigNumber as a simple fraction with + * an integer numerator and an integer denominator. The denominator will be a positive + * non-zero value less than or equal to the specified maximum denominator. If a maximum + * denominator is not specified, the denominator will be the lowest value necessary to + * represent the number exactly. + * + * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator. + * + * '[BigNumber Error] Argument {not an integer|out of range} : {md}' + */ + P.toFraction = function (md) { + var arr, d, d0, d1, d2, e, exp, n, n0, n1, q, s, + x = this, + xc = x.c; + + if ( md != null ) { + n = new BigNumber(md); + + if ( !n.isInteger() || n.lt(ONE) ) { + throw Error + ( bignumberError + 'Argument ' + + ( n.isInteger() ? 'out of range: ' : 'not an integer: ' ) + md ); + } + } + + if ( !xc ) return x.toString(); + + d = new BigNumber(ONE); + n1 = d0 = new BigNumber(ONE); + d1 = n0 = new BigNumber(ONE); + s = coeffToString(xc); + + // Determine initial denominator. + // d is a power of 10 and the minimum max denominator that specifies the value exactly. + e = d.e = s.length - x.e - 1; + d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ]; + md = !md || n.comparedTo(d) > 0 ? ( e > 0 ? d : n1 ) : n; + + exp = MAX_EXP; + MAX_EXP = 1 / 0; + n = new BigNumber(s); + + // n0 = d1 = 0 + n0.c[0] = 0; + + for ( ; ; ) { + q = div( n, d, 0, 1 ); + d2 = d0.plus( q.times(d1) ); + if ( d2.comparedTo(md) == 1 ) break; + d0 = d1; + d1 = d2; + n1 = n0.plus( q.times( d2 = n1 ) ); + n0 = d2; + d = n.minus( q.times( d2 = d ) ); + n = d2; + } + + d2 = div( md.minus(d0), d1, 0, 1 ); + n0 = n0.plus( d2.times(n1) ); + d0 = d0.plus( d2.times(d1) ); + n0.s = n1.s = x.s; + e *= 2; + + // Determine which fraction is closer to x, n0/d0 or n1/d1 + arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().comparedTo( + div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1 + ? [ n1.toString(), d1.toString() ] + : [ n0.toString(), d0.toString() ]; + + MAX_EXP = exp; + return arr; + }; + + + /* + * Return the value of this BigNumber converted to a number primitive. + */ + P.toNumber = function () { + return +this; + }; + + + /* + * Return a BigNumber whose value is the value of this BigNumber exponentiated by n. + * + * If m is present, return the result modulo m. + * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE. + * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE. + * + * The modular power operation works efficiently when x, n, and m are positive integers, + * otherwise it is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0. + * + * n {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. + * [m] {number|string|BigNumber} The modulus. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {n}' + * + * Performs 54 loop iterations for n of 9007199254740991. + */ + P.exponentiatedBy = P.pow = function ( n, m ) { + var i, k, y, z, + x = this; + + intCheck( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER ); + if ( m != null ) m = new BigNumber(m); + + if (m) { + if ( n > 1 && x.gt(ONE) && x.isInteger() && m.gt(ONE) && m.isInteger() ) { + x = x.mod(m); + } else { + z = m; + + // Nullify m so only a single mod operation is performed at the end. + m = null; + } + } else if (POW_PRECISION) { + + // Truncating each coefficient array to a length of k after each multiplication + // equates to truncating significant digits to POW_PRECISION + [28, 41], + // i.e. there will be a minimum of 28 guard digits retained. + //k = mathceil( POW_PRECISION / LOG_BASE + 1.5 ); // gives [9, 21] guard digits. + k = mathceil( POW_PRECISION / LOG_BASE + 2 ); + } + + y = new BigNumber(ONE); + + for ( i = mathfloor( n < 0 ? -n : n ); ; ) { + if ( i % 2 ) { + y = y.times(x); + if ( !y.c ) break; + if (k) { + if ( y.c.length > k ) y.c.length = k; + } else if (m) { + y = y.mod(m); + } + } + + i = mathfloor( i / 2 ); + if ( !i ) break; + x = x.times(x); + if (k) { + if ( x.c && x.c.length > k ) x.c.length = k; + } else if (m) { + x = x.mod(m); + } + } + + if (m) return y; + if ( n < 0 ) y = ONE.div(y); + + return z ? y.mod(z) : k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y; + }; + + + /* + * Return a string representing the value of this BigNumber rounded to sd significant digits + * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits + * necessary to represent the integer part of the value in fixed-point notation, then use + * exponential notation. + * + * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}' + */ + P.toPrecision = function ( sd, rm ) { + if ( sd != null ) intCheck( sd, 1, MAX ); + return format( this, sd, rm, 2 ); + }; + + + /* + * Return a string representing the value of this BigNumber in base b, or base 10 if b is + * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and + * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent + * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than + * TO_EXP_NEG, return exponential notation. + * + * [b] {number} Integer, 2 to ALPHABET.length inclusive. + * + * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}' + */ + P.toString = function (b) { + var str, + n = this, + s = n.s, + e = n.e; + + // Infinity or NaN? + if ( e === null ) { + + if (s) { + str = 'Infinity'; + if ( s < 0 ) str = '-' + str; + } else { + str = 'NaN'; + } + } else { + str = coeffToString( n.c ); + + if ( b == null ) { + str = e <= TO_EXP_NEG || e >= TO_EXP_POS + ? toExponential( str, e ) + : toFixedPoint( str, e, '0' ); + } else { + intCheck( b, 2, ALPHABET.length, 'Base' ); + str = convertBase( toFixedPoint( str, e, '0' ), 10, b, s, true ); + } + + if ( s < 0 && n.c[0] ) str = '-' + str; + } + + return str; + }; + + + /* + * Return as toString, but do not accept a base argument, and include the minus sign for + * negative zero. + */ + P.valueOf = P.toJSON = function () { + var str, + n = this, + e = n.e; + + if ( e === null ) return n.toString(); + + str = coeffToString( n.c ); + + str = e <= TO_EXP_NEG || e >= TO_EXP_POS + ? toExponential( str, e ) + : toFixedPoint( str, e, '0' ); + + return n.s < 0 ? '-' + str : str; + }; + + + P._isBigNumber = true; + + if ( configObject != null ) BigNumber.set(configObject); + + return BigNumber; +} + + +// PRIVATE HELPER FUNCTIONS + + +function bitFloor(n) { + var i = n | 0; + return n > 0 || n === i ? i : i - 1; +} + + +// Return a coefficient array as a string of base 10 digits. +function coeffToString(a) { + var s, z, + i = 1, + j = a.length, + r = a[0] + ''; + + for ( ; i < j; ) { + s = a[i++] + ''; + z = LOG_BASE - s.length; + for ( ; z--; s = '0' + s ); + r += s; + } + + // Determine trailing zeros. + for ( j = r.length; r.charCodeAt(--j) === 48; ); + return r.slice( 0, j + 1 || 1 ); +} + + +// Compare the value of BigNumbers x and y. +function compare( x, y ) { + var a, b, + xc = x.c, + yc = y.c, + i = x.s, + j = y.s, + k = x.e, + l = y.e; + + // Either NaN? + if ( !i || !j ) return null; + + a = xc && !xc[0]; + b = yc && !yc[0]; + + // Either zero? + if ( a || b ) return a ? b ? 0 : -j : i; + + // Signs differ? + if ( i != j ) return i; + + a = i < 0; + b = k == l; + + // Either Infinity? + if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1; + + // Compare exponents. + if ( !b ) return k > l ^ a ? 1 : -1; + + j = ( k = xc.length ) < ( l = yc.length ) ? k : l; + + // Compare digit by digit. + for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1; + + // Compare lengths. + return k == l ? 0 : k > l ^ a ? 1 : -1; +} + + +/* + * Check that n is a primitive number, an integer, and in range, otherwise throw. + */ +function intCheck( n, min, max, name ) { + if ( n < min || n > max || n !== ( n < 0 ? mathceil(n) : mathfloor(n) ) ) { + throw Error + ( bignumberError + ( name || 'Argument' ) + ( typeof n == 'number' + ? n < min || n > max ? ' out of range: ' : ' not an integer: ' + : ' not a primitive number: ' ) + n ); + } +} + + +function isArray(obj) { + return Object.prototype.toString.call(obj) == '[object Array]'; +} + + +function toExponential( str, e ) { + return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) + + ( e < 0 ? 'e' : 'e+' ) + e; +} + + +function toFixedPoint( str, e, z ) { + var len, zs; + + // Negative exponent? + if ( e < 0 ) { + + // Prepend zeros. + for ( zs = z + '.'; ++e; zs += z ); + str = zs + str; + + // Positive exponent + } else { + len = str.length; + + // Append zeros. + if ( ++e > len ) { + for ( zs = z, e -= len; --e; zs += z ); + str += zs; + } else if ( e < len ) { + str = str.slice( 0, e ) + '.' + str.slice(e); + } + } + + return str; +} + + +// EXPORT + + +BigNumber = clone(); +BigNumber['default'] = BigNumber.BigNumber = BigNumber; + +export default BigNumber;
\ No newline at end of file diff --git a/packages/instant/test/util/maybe_big_number.test.ts b/packages/instant/test/util/maybe_big_number.test.ts new file mode 100644 index 000000000..f32e33eb1 --- /dev/null +++ b/packages/instant/test/util/maybe_big_number.test.ts @@ -0,0 +1,71 @@ +import { BigNumber } from '@0x/utils'; + +import { maybeBigNumberUtil } from '../../src/util/maybe_big_number'; + +// import PrevBigNumber from './dependencies/prevbignumber'; + +const BIG_NUMBER_1 = new BigNumber('10.1'); +const BIG_NUMBER_2 = new BigNumber('10.1'); +const BIG_NUMBER_3 = new BigNumber('11.1'); +// const PREVBIG_NUMBER_1 = new PrevBigNumber('11.1'); + +describe('maybeBigNumberUtil', () => { + describe('stringToMaybeBigNumber', () => { + it('should return undefined if stringValue is NaN', () => { + expect(maybeBigNumberUtil.stringToMaybeBigNumber('NaN')).toEqual(undefined); + }); + it('should return bignumber constructed with stringValue', () => { + const bn = maybeBigNumberUtil.stringToMaybeBigNumber('10.1'); + if (!!bn) { + expect(bn.toString()).toEqual('10.1'); + } + }); + it('should return undefined if stringValue is not valid (i.e not numeric)', () => { + expect(maybeBigNumberUtil.stringToMaybeBigNumber('test')).toEqual(undefined); + }); + }); + + describe('areMaybeBigNumbersEqual', () => { + it('should return true if val1 and val2 are equivalent BigNumber values', () => { + expect(maybeBigNumberUtil.areMaybeBigNumbersEqual(BIG_NUMBER_1, BIG_NUMBER_2)).toEqual(true); + }); + it('should return true if val1 and val2 are both undefined', () => { + expect(maybeBigNumberUtil.areMaybeBigNumbersEqual(undefined, undefined)).toEqual(true); + }); + it('should return false if either one val1 or val2 is undefined', () => { + expect(maybeBigNumberUtil.areMaybeBigNumbersEqual(BIG_NUMBER_1, undefined)).toEqual(false); + }); + it('should return false if val1 and val2 are equivalent values BigNumber', () => { + expect(maybeBigNumberUtil.areMaybeBigNumbersEqual(BIG_NUMBER_1, BIG_NUMBER_3)).toEqual(false); + }); + }); + + // describe('bigNumberOrStringToMaybeBigNumber', () => { + // it('should return BigNumber (>=v8.0.0) constructed with value if type is string', () => { + // const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('10.1'); + // if (!!bn) { + // expect(bn.toString()).toEqual('10.1'); + // } + // }); + // it('should return undefined if value is NaN', () => { + // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('NaN')).toEqual(undefined); + // }); + // it('should return undefined if value as string is not valid (i.e not numeric)', () => { + // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('test')).toEqual(undefined); + // }); + // it('should return undefined if value as string is not valid (i.e not numeric)', () => { + // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('test')).toEqual(undefined); + // }); + // it('should return BigNumber (>=v8.0.0) when passed a value as BigNumber (<v8.0.0)', () => { + // const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(PREVBIG_NUMBER_1); + // expect(BigNumber.isBigNumber(bn)).toEqual(true); + // }); + // it('should return BigNumber (>=v8.0.0) when passed a value as BigNumber (>=v8.0.0)', () => { + // const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(BIG_NUMBER_1); + // expect(BigNumber.isBigNumber(bn)).toEqual(true); + // }); + // it('should return undefined if value is not BigNumber or string', () => { + // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(true)).toEqual(undefined); + // }); + // }); +}); |