1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
Copyright 2018 ZeroEx Intl.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
pragma solidity 0.4.24;
pragma experimental ABIEncoderV2;
import "./LibOrder.sol";
contract LibAbiEncoder {
/// @dev ABI encodes calldata for `fillOrder` in memory and returns the address range.
/// This range can be passed into `call` or `delegatecall` to invoke an external
/// call to `fillOrder`.
/// @param order Order struct containing order specifications.
/// @param takerAssetFillAmount Desired amount of takerAsset to sell.
/// @param signature Proof that order has been created by maker.
/// @return calldataBegin Memory address of ABI encoded calldata.
/// @return calldataLength Lenfgth of ABI encoded calldata.
function abiEncodeFillOrder(
LibOrder.Order memory order,
uint256 takerAssetFillAmount,
bytes memory signature
)
public
pure
returns (bytes memory fillOrderCalldata)
{
// We need to call MExchangeCore.fillOrder using a delegatecall in
// assembly so that we can intercept a call that throws. For this, we
// need the input encoded in memory in the Ethereum ABIv2 format [1].
// | Area | Offset | Length | Contents |
// | -------- |--------|---------|-------------------------------------------- |
// | Header | 0x00 | 4 | function selector |
// | Params | | 3 * 32 | function parameters: |
// | | 0x00 | | 1. offset to order (*) |
// | | 0x20 | | 2. takerAssetFillAmount |
// | | 0x40 | | 3. offset to signature (*) |
// | Data | | 12 * 32 | order: |
// | | 0x000 | | 1. senderAddress |
// | | 0x020 | | 2. makerAddress |
// | | 0x040 | | 3. takerAddress |
// | | 0x060 | | 4. feeRecipientAddress |
// | | 0x080 | | 5. makerAssetAmount |
// | | 0x0A0 | | 6. takerAssetAmount |
// | | 0x0C0 | | 7. makerFeeAmount |
// | | 0x0E0 | | 8. takerFeeAmount |
// | | 0x100 | | 9. expirationTimeSeconds |
// | | 0x120 | | 10. salt |
// | | 0x140 | | 11. Offset to makerAssetData (*) |
// | | 0x160 | | 12. Offset to takerAssetData (*) |
// | | 0x180 | 32 | makerAssetData Length |
// | | 0x1A0 | ** | makerAssetData Contents |
// | | 0x1C0 | 32 | takerAssetData Length |
// | | 0x1E0 | ** | takerAssetData Contents |
// | | 0x200 | 32 | signature Length |
// | | 0x220 | ** | signature Contents |
// * Offsets are calculated from the beginning of the current area: Header, Params, Data:
// An offset stored in the Params area is calculated from the beginning of the Params section.
// An offset stored in the Data area is calculated from the beginning of the Data section.
// ** The length of dynamic array contents are stored in the field immediately preceeding the contents.
// [1]: https://solidity.readthedocs.io/en/develop/abi-spec.html
assembly {
// Areas below may use the following variables:
// 1. <area>Start -- Start of this area in memory
// 2. <area>End -- End of this area in memory. This value may
// be precomputed (before writing contents),
// or it may be computed as contents are written.
// 3. <area>Offset -- Current offset into area. If an area's End
// is precomputed, this variable tracks the
// offsets of contents as they are written.
/////// Setup Header Area ///////
// Load free memory pointer
fillOrderCalldata := mload(0x40)
// bytes4(keccak256("fillOrder((address,address,address,address,uint256,uint256,uint256,uint256,uint256,uint256,bytes,bytes),uint256,bytes)"))
// = 0xb4be83d5
// Leave 0x20 bytes to store the length
mstore(add(fillOrderCalldata, 0x20), 0xb4be83d500000000000000000000000000000000000000000000000000000000)
let headerAreaEnd := add(fillOrderCalldata, 0x24)
/////// Setup Params Area ///////
// This area is preallocated and written to later.
// This is because we need to fill in offsets that have not yet been calculated.
let paramsAreaStart := headerAreaEnd
let paramsAreaEnd := add(paramsAreaStart, 0x60)
let paramsAreaOffset := paramsAreaStart
/////// Setup Data Area ///////
let dataAreaStart := paramsAreaEnd
let dataAreaEnd := dataAreaStart
// Offset from the source data we're reading from
let sourceOffset := order
// arrayLenBytes and arrayLenWords track the length of a dynamically-allocated bytes array.
let arrayLenBytes := 0
let arrayLenWords := 0
/////// Write order Struct ///////
// Write memory location of Order, relative to the start of the
// parameter list, then increment the paramsAreaOffset respectively.
mstore(paramsAreaOffset, sub(dataAreaEnd, paramsAreaStart))
paramsAreaOffset := add(paramsAreaOffset, 0x20)
// Write values for each field in the order
// It would be nice to use a loop, but we save on gas by writing
// the stores sequentially.
mstore(dataAreaEnd, mload(sourceOffset)) // makerAddress
mstore(add(dataAreaEnd, 0x20), mload(add(sourceOffset, 0x20))) // takerAddress
mstore(add(dataAreaEnd, 0x40), mload(add(sourceOffset, 0x40))) // feeRecipientAddress
mstore(add(dataAreaEnd, 0x60), mload(add(sourceOffset, 0x60))) // senderAddress
mstore(add(dataAreaEnd, 0x80), mload(add(sourceOffset, 0x80))) // makerAssetAmount
mstore(add(dataAreaEnd, 0xA0), mload(add(sourceOffset, 0xA0))) // takerAssetAmount
mstore(add(dataAreaEnd, 0xC0), mload(add(sourceOffset, 0xC0))) // makerFeeAmount
mstore(add(dataAreaEnd, 0xE0), mload(add(sourceOffset, 0xE0))) // takerFeeAmount
mstore(add(dataAreaEnd, 0x100), mload(add(sourceOffset, 0x100))) // expirationTimeSeconds
mstore(add(dataAreaEnd, 0x120), mload(add(sourceOffset, 0x120))) // salt
mstore(add(dataAreaEnd, 0x140), mload(add(sourceOffset, 0x140))) // Offset to makerAssetData
mstore(add(dataAreaEnd, 0x160), mload(add(sourceOffset, 0x160))) // Offset to takerAssetData
dataAreaEnd := add(dataAreaEnd, 0x180)
sourceOffset := add(sourceOffset, 0x180)
// Write offset to <order.makerAssetData>
mstore(add(dataAreaStart, mul(10, 0x20)), sub(dataAreaEnd, dataAreaStart))
// Calculate length of <order.makerAssetData>
sourceOffset := mload(add(order, 0x140)) // makerAssetData
arrayLenBytes := mload(sourceOffset)
sourceOffset := add(sourceOffset, 0x20)
arrayLenWords := div(add(arrayLenBytes, 0x1F), 0x20)
// Write length of <order.makerAssetData>
mstore(dataAreaEnd, arrayLenBytes)
dataAreaEnd := add(dataAreaEnd, 0x20)
// Write contents of <order.makerAssetData>
for {let i := 0} lt(i, arrayLenWords) {i := add(i, 1)} {
mstore(dataAreaEnd, mload(sourceOffset))
dataAreaEnd := add(dataAreaEnd, 0x20)
sourceOffset := add(sourceOffset, 0x20)
}
// Write offset to <order.takerAssetData>
mstore(add(dataAreaStart, mul(11, 0x20)), sub(dataAreaEnd, dataAreaStart))
// Calculate length of <order.takerAssetData>
sourceOffset := mload(add(order, 0x160)) // takerAssetData
arrayLenBytes := mload(sourceOffset)
sourceOffset := add(sourceOffset, 0x20)
arrayLenWords := div(add(arrayLenBytes, 0x1F), 0x20)
// Write length of <order.takerAssetData>
mstore(dataAreaEnd, arrayLenBytes)
dataAreaEnd := add(dataAreaEnd, 0x20)
// Write contents of <order.takerAssetData>
for {let i := 0} lt(i, arrayLenWords) {i := add(i, 1)} {
mstore(dataAreaEnd, mload(sourceOffset))
dataAreaEnd := add(dataAreaEnd, 0x20)
sourceOffset := add(sourceOffset, 0x20)
}
/////// Write takerAssetFillAmount ///////
mstore(paramsAreaOffset, takerAssetFillAmount)
paramsAreaOffset := add(paramsAreaOffset, 0x20)
/////// Write signature ///////
// Write offset to paramsArea
mstore(paramsAreaOffset, sub(dataAreaEnd, paramsAreaStart))
// Calculate length of signature
sourceOffset := signature
arrayLenBytes := mload(sourceOffset)
sourceOffset := add(sourceOffset, 0x20)
arrayLenWords := div(add(arrayLenBytes, 0x1F), 0x20)
// Write length of signature
mstore(dataAreaEnd, arrayLenBytes)
dataAreaEnd := add(dataAreaEnd, 0x20)
// Write contents of signature
for {let i := 0} lt(i, arrayLenWords) {i := add(i, 1)} {
mstore(dataAreaEnd, mload(sourceOffset))
dataAreaEnd := add(dataAreaEnd, 0x20)
sourceOffset := add(sourceOffset, 0x20)
}
// Set length of calldata
mstore(
fillOrderCalldata,
sub(dataAreaEnd, add(fillOrderCalldata, 0x20))
)
}
return fillOrderCalldata;
}
}
|