aboutsummaryrefslogtreecommitdiffstats
path: root/docs/assembly.rst
diff options
context:
space:
mode:
authorchriseth <chris@ethereum.org>2017-12-13 22:51:33 +0800
committerGitHub <noreply@github.com>2017-12-13 22:51:33 +0800
commitbfc54463181a617c1a523826b34c210222c98740 (patch)
tree8c3732c7a5961c00bee6adb3f916b99744c65bf7 /docs/assembly.rst
parent7614b16dc9b2bb1e267e8f46834b40220fb9f9fb (diff)
parent93cf4dee666e01d6907c75c4018a701e5069daad (diff)
downloaddexon-solidity-bfc54463181a617c1a523826b34c210222c98740.tar.gz
dexon-solidity-bfc54463181a617c1a523826b34c210222c98740.tar.zst
dexon-solidity-bfc54463181a617c1a523826b34c210222c98740.zip
Merge pull request #3295 from mcdee/develop
Remove warnings in examples
Diffstat (limited to 'docs/assembly.rst')
-rw-r--r--docs/assembly.rst18
1 files changed, 9 insertions, 9 deletions
diff --git a/docs/assembly.rst b/docs/assembly.rst
index a4fa88c6..825892b3 100644
--- a/docs/assembly.rst
+++ b/docs/assembly.rst
@@ -23,7 +23,7 @@ arising when writing manual assembly by the following features:
* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul``
* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)``
-* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }``
+* access to external variables: ``function f(uint x) public { assembly { x := sub(x, 1) } }``
* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))``
* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }``
* if statements: ``if slt(x, 0) { x := sub(0, x) }``
@@ -54,7 +54,7 @@ idea is that assembly libraries will be used to enhance the language in such way
pragma solidity ^0.4.0;
library GetCode {
- function at(address _addr) returns (bytes o_code) {
+ function at(address _addr) public returns (bytes o_code) {
assembly {
// retrieve the size of the code, this needs assembly
let size := extcodesize(_addr)
@@ -83,7 +83,7 @@ you really know what you are doing.
library VectorSum {
// This function is less efficient because the optimizer currently fails to
// remove the bounds checks in array access.
- function sumSolidity(uint[] _data) returns (uint o_sum) {
+ function sumSolidity(uint[] _data) public returns (uint o_sum) {
for (uint i = 0; i < _data.length; ++i)
o_sum += _data[i];
}
@@ -91,7 +91,7 @@ you really know what you are doing.
// We know that we only access the array in bounds, so we can avoid the check.
// 0x20 needs to be added to an array because the first slot contains the
// array length.
- function sumAsm(uint[] _data) returns (uint o_sum) {
+ function sumAsm(uint[] _data) public returns (uint o_sum) {
for (uint i = 0; i < _data.length; ++i) {
assembly {
o_sum := add(o_sum, mload(add(add(_data, 0x20), mul(i, 0x20))))
@@ -100,7 +100,7 @@ you really know what you are doing.
}
// Same as above, but accomplish the entire code within inline assembly.
- function sumPureAsm(uint[] _data) returns (uint o_sum) {
+ function sumPureAsm(uint[] _data) public returns (uint o_sum) {
assembly {
// Load the length (first 32 bytes)
let len := mload(_data)
@@ -388,7 +388,7 @@ changes during the call, and thus references to local variables will be wrong.
contract C {
uint b;
- function f(uint x) returns (uint r) {
+ function f(uint x) public returns (uint r) {
assembly {
r := mul(x, sload(b_slot)) // ignore the offset, we know it is zero
}
@@ -462,7 +462,7 @@ be just ``0``, but it can also be a complex functional-style expression.
pragma solidity ^0.4.0;
contract C {
- function f(uint x) returns (uint b) {
+ function f(uint x) public returns (uint b) {
assembly {
let v := add(x, 1)
mstore(0x80, v)
@@ -574,7 +574,7 @@ Simply leave the initialization and post-iteration parts empty.
x := add(x, mload(i))
i := add(i, 0x20)
}
- }
+ }
Functions
---------
@@ -713,7 +713,7 @@ We consider the runtime bytecode of the following Solidity program::
pragma solidity ^0.4.0;
contract C {
- function f(uint x) returns (uint y) {
+ function f(uint x) public returns (uint y) {
y = 1;
for (uint i = 0; i < x; i++)
y = 2 * y;