aboutsummaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
authorchriseth <chris@ethereum.org>2017-01-11 00:56:58 +0800
committerGitHub <noreply@github.com>2017-01-11 00:56:58 +0800
commit26a90af4d2ffb6a78056cc825f490096e4cc7176 (patch)
treedacca2f4334d027525ab2e535d8837ea6872241d /docs
parent354a10be36e507319faa72f691d441c06d75da6b (diff)
parentceac5c5a0c75e92040749e4dca794b2a07a431f0 (diff)
downloaddexon-solidity-26a90af4d2ffb6a78056cc825f490096e4cc7176.tar.gz
dexon-solidity-26a90af4d2ffb6a78056cc825f490096e4cc7176.tar.zst
dexon-solidity-26a90af4d2ffb6a78056cc825f490096e4cc7176.zip
Merge pull request #1330 from ethereum/assemblyDef
Assembly definition.
Diffstat (limited to 'docs')
-rw-r--r--docs/assembly.rst950
-rw-r--r--docs/solidity-in-depth.rst1
2 files changed, 951 insertions, 0 deletions
diff --git a/docs/assembly.rst b/docs/assembly.rst
new file mode 100644
index 00000000..57c0bf9b
--- /dev/null
+++ b/docs/assembly.rst
@@ -0,0 +1,950 @@
+#################
+Solidity Assembly
+#################
+
+.. index:: ! assembly, ! asm, ! evmasm
+
+Solidity defines an assembly language that can also be used without Solidity.
+This assembly language can also be used as "inline assembly" inside Solidity
+source code. We start with describing how to use inline assembly and how it
+differs from standalone assembly and then specify assembly itself.
+
+TODO: Write about how scoping rules of inline assembly are a bit different
+and the complications that arise when for example using internal functions
+of libraries. Furhermore, write about the symbols defined by the compiler.
+
+Inline Assembly
+===============
+
+For more fine-grained control especially in order to enhance the language by writing libraries,
+it is possible to interleave Solidity statements with inline assembly in a language close
+to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is
+often hard to address the correct stack slot and provide arguments to opcodes at the correct
+point on the stack. Solidity's inline assembly tries to facilitate that and other issues
+arising when writing manual assembly by the following features:
+
+* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul``
+* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)``
+* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }``
+* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))``
+* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }``
+* switch statements: ``switch x case 0: { y := mul(x, 2) } default: { y := 0 }``
+* function calls: ``function f(x) -> (y) { switch x case 0: { y := 1 } default: { y := mul(x, f(sub(x, 1))) } }``
+
+.. note::
+ Of the above, loops, function calls and switch statements are not yet implemented.
+
+We now want to describe the inline assembly language in detail.
+
+.. warning::
+ Inline assembly is still a relatively new feature and might change if it does not prove useful,
+ so please try to keep up to date.
+
+Example
+-------
+
+The following example provides library code to access the code of another contract and
+load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the
+idea is that assembly libraries will be used to enhance the language in such ways.
+
+.. code::
+
+ library GetCode {
+ function at(address _addr) returns (bytes o_code) {
+ assembly {
+ // retrieve the size of the code, this needs assembly
+ let size := extcodesize(_addr)
+ // allocate output byte array - this could also be done without assembly
+ // by using o_code = new bytes(size)
+ o_code := mload(0x40)
+ // new "memory end" including padding
+ mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
+ // store length in memory
+ mstore(o_code, size)
+ // actually retrieve the code, this needs assembly
+ extcodecopy(_addr, add(o_code, 0x20), 0, size)
+ }
+ }
+ }
+
+Inline assembly could also be beneficial in cases where the optimizer fails to produce
+efficient code. Please be aware that assembly is much more difficult to write because
+the compiler does not perform checks, so you should use it only if
+you really know what you are doing.
+
+.. code::
+
+ library VectorSum {
+ // This function is less efficient because the optimizer currently fails to
+ // remove the bounds checks in array access.
+ function sumSolidity(uint[] _data) returns (uint o_sum) {
+ for (uint i = 0; i < _data.length; ++i)
+ o_sum += _data[i];
+ }
+
+ // We know that we only access the array in bounds, so we can avoid the check.
+ // 0x20 needs to be added to an array because the first slot contains the
+ // array length.
+ function sumAsm(uint[] _data) returns (uint o_sum) {
+ for (uint i = 0; i < _data.length; ++i) {
+ assembly {
+ o_sum := mload(add(add(_data, 0x20), mul(i, 0x20)))
+ }
+ }
+ }
+ }
+
+
+Syntax
+------
+
+Assembly parses comments, literals and identifiers exactly as Solidity, so you can use the
+usual ``//`` and ``/* */`` comments. Inline assembly is marked by ``assembly { ... }`` and inside
+these curly braces, the following can be used (see the later sections for more details)
+
+ - literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
+ - opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below
+ - opcode in functional style, e.g. ``add(1, mlod(0))``
+ - labels, e.g. ``name:``
+ - variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)``
+ - identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g. ``jump(name)``, ``3 x add``
+ - assignments (in "instruction style"), e.g. ``3 =: x``
+ - assignments in functional style, e.g. ``x := add(y, 3)``
+ - blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }``
+
+Opcodes
+-------
+
+This document does not want to be a full description of the Ethereum virtual machine, but the
+following list can be used as a reference of its opcodes.
+
+If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
+Note that the order of arguments can be seed to be reversed in non-functional style (explained below).
+Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
+special and all others push exactly one item onte the stack.
+
+In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to
+(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``.
+
+The opcodes ``pushi`` and ``jumpdest`` cannot be used directly.
+
+In the grammar, opcodes are represented as pre-defined identifiers.
+
++-------------------------+------+-----------------------------------------------------------------+
+| stop + `-` | stop execution, identical to return(0,0) |
++-------------------------+------+-----------------------------------------------------------------+
+| add(x, y) | | x + y |
++-------------------------+------+-----------------------------------------------------------------+
+| sub(x, y) | | x - y |
++-------------------------+------+-----------------------------------------------------------------+
+| mul(x, y) | | x * y |
++-------------------------+------+-----------------------------------------------------------------+
+| div(x, y) | | x / y |
++-------------------------+------+-----------------------------------------------------------------+
+| sdiv(x, y) | | x / y, for signed numbers in two's complement |
++-------------------------+------+-----------------------------------------------------------------+
+| mod(x, y) | | x % y |
++-------------------------+------+-----------------------------------------------------------------+
+| smod(x, y) | | x % y, for signed numbers in two's complement |
++-------------------------+------+-----------------------------------------------------------------+
+| exp(x, y) | | x to the power of y |
++-------------------------+------+-----------------------------------------------------------------+
+| not(x) | | ~x, every bit of x is negated |
++-------------------------+------+-----------------------------------------------------------------+
+| lt(x, y) | | 1 if x < y, 0 otherwise |
++-------------------------+------+-----------------------------------------------------------------+
+| gt(x, y) | | 1 if x > y, 0 otherwise |
++-------------------------+------+-----------------------------------------------------------------+
+| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
++-------------------------+------+-----------------------------------------------------------------+
+| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
++-------------------------+------+-----------------------------------------------------------------+
+| eq(x, y) | | 1 if x == y, 0 otherwise |
++-------------------------+------+-----------------------------------------------------------------+
+| iszero(x) | | 1 if x == 0, 0 otherwise |
++-------------------------+------+-----------------------------------------------------------------+
+| and(x, y) | | bitwise and of x and y |
++-------------------------+------+-----------------------------------------------------------------+
+| or(x, y) | | bitwise or of x and y |
++-------------------------+------+-----------------------------------------------------------------+
+| xor(x, y) | | bitwise xor of x and y |
++-------------------------+------+-----------------------------------------------------------------+
+| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte |
++-------------------------+------+-----------------------------------------------------------------+
+| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics |
++-------------------------+------+-----------------------------------------------------------------+
+| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics |
++-------------------------+------+-----------------------------------------------------------------+
+| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant |
++-------------------------+------+-----------------------------------------------------------------+
+| sha3(p, n) | | keccak(mem[p...(p+n))) |
++-------------------------+------+-----------------------------------------------------------------+
+| jump(label) | `-` | jump to label / code position |
++-------------------------+------+-----------------------------------------------------------------+
+| jumpi(label, cond) | `-` | jump to label if cond is nonzero |
++-------------------------+------+-----------------------------------------------------------------+
+| pc | | current position in code |
++-------------------------+------+-----------------------------------------------------------------+
+| pop | `*` | remove topmost stack slot |
++-------------------------+------+-----------------------------------------------------------------+
+| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
++-------------------------+------+-----------------------------------------------------------------+
+| swap1 ... swap16 | `*` | swap topmost and ith stack slot below it |
++-------------------------+------+-----------------------------------------------------------------+
+| mload(p) | | mem[p..(p+32)) |
++-------------------------+------+-----------------------------------------------------------------+
+| mstore(p, v) | `-` | mem[p..(p+32)) := v |
++-------------------------+------+-----------------------------------------------------------------+
+| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte |
++-------------------------+------+-----------------------------------------------------------------+
+| sload(p) | | storage[p] |
++-------------------------+------+-----------------------------------------------------------------+
+| sstore(p, v) | `-` | storage[p] := v |
++-------------------------+------+-----------------------------------------------------------------+
+| msize | | size of memory, i.e. largest accessed memory index |
++-------------------------+------+-----------------------------------------------------------------+
+| gas | | gas still available to execution |
++-------------------------+------+-----------------------------------------------------------------+
+| address | | address of the current contract / execution context |
++-------------------------+------+-----------------------------------------------------------------+
+| balance(a) | | wei balance at address a |
++-------------------------+------+-----------------------------------------------------------------+
+| caller | | call sender (excluding delegatecall) |
++-------------------------+------+-----------------------------------------------------------------+
+| callvalue | | wei sent together with the current call |
++-------------------------+------+-----------------------------------------------------------------+
+| calldataload(p) | | call data starting from position p (32 bytes) |
++-------------------------+------+-----------------------------------------------------------------+
+| calldatasize | | size of call data in bytes |
++-------------------------+------+-----------------------------------------------------------------+
+| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t |
++-------------------------+------+-----------------------------------------------------------------+
+| codesize | | size of the code of the current contract / execution context |
++-------------------------+------+-----------------------------------------------------------------+
+| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t |
++-------------------------+------+-----------------------------------------------------------------+
+| extcodesize(a) | | size of the code at address a |
++-------------------------+------+-----------------------------------------------------------------+
+| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a |
++-------------------------+------+-----------------------------------------------------------------+
+| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
+| | | and return the new address |
++-------------------------+------+-----------------------------------------------------------------+
+| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] |
+| insize, out, outsize) | | providing g gas and v wei and output area |
+| | | mem[out..(out+outsize)] returting 1 on error (out of gas) |
++-------------------------+------+-----------------------------------------------------------------+
+| callcode(g, a, v, in, | | identical to call but only use the code from a and stay |
+| insize, out, outsize) | | in the context of the current contract otherwise |
++-------------------------+------+-----------------------------------------------------------------+
+| delegatecall(g, a, in, | | identical to callcode but also keep ``caller`` |
+| insize, out, outsize) | | and ``callvalue`` |
++-------------------------+------+-----------------------------------------------------------------+
+| return(p, s) | `*` | end execution, return data mem[p..(p+s)) |
++-------------------------+------+-----------------------------------------------------------------+
+| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a |
++-------------------------+------+-----------------------------------------------------------------+
+| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
++-------------------------+------+-----------------------------------------------------------------+
+| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) |
++-------------------------+------+-----------------------------------------------------------------+
+| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) |
++-------------------------+------+-----------------------------------------------------------------+
+| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) |
++-------------------------+------+-----------------------------------------------------------------+
+| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
+| t4) | | |
++-------------------------+------+-----------------------------------------------------------------+
+| origin | | transaction sender |
++-------------------------+------+-----------------------------------------------------------------+
+| gasprice | | gas price of the transaction |
++-------------------------+------+-----------------------------------------------------------------+
+| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current |
++-------------------------+------+-----------------------------------------------------------------+
+| coinbase | | current mining beneficiary |
++-------------------------+------+-----------------------------------------------------------------+
+| timestamp | | timestamp of the current block in seconds since the epoch |
++-------------------------+------+-----------------------------------------------------------------+
+| number | | current block number |
++-------------------------+------+-----------------------------------------------------------------+
+| difficulty | | difficulty of the current block |
++-------------------------+------+-----------------------------------------------------------------+
+| gaslimit | | block gas limit of the current block |
++-------------------------+------+-----------------------------------------------------------------+
+
+Literals
+--------
+
+You can use integer constants by typing them in decimal or hexadecimal notation and an
+appropriate ``PUSHi`` instruction will automatically be generated. The following creates code
+to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
+Strings are stored left-aligned and cannot be longer than 32 bytes.
+
+.. code::
+
+ assembly { 2 3 add "abc" and }
+
+Functional Style
+-----------------
+
+You can type opcode after opcode in the same way they will end up in bytecode. For example
+adding ``3`` to the contents in memory at position ``0x80`` would be
+
+.. code::
+
+ 3 0x80 mload add 0x80 mstore
+
+As it is often hard to see what the actual arguments for certain opcodes are,
+Solidity inline assembly also provides a "functional style" notation where the same code
+would be written as follows
+
+.. code::
+
+ mstore(0x80, add(mload(0x80), 3))
+
+Functional style and instructional style can be mixed, but any opcode inside a
+functional style expression has to return exactly one stack slot (most of the opcodes do).
+
+Note that the order of arguments is reversed in functional-style as opposed to the instruction-style
+way. If you use functional-style, the first argument will end up on the stack top.
+
+
+Access to External Variables and Functions
+------------------------------------------
+
+Solidity variables and other identifiers can be accessed by simply using their name.
+For storage and memory variables, this will push the address and not the value onto the
+stack. Also note that non-struct and non-array storage variable addresses occupy two slots
+on the stack: One for the address and one for the byte offset inside the storage slot.
+In assignments (see below), we can even use local Solidity variables to assign to.
+
+Functions external to inline assembly can also be accessed: The assembly will
+push their entry label (with virtual function resolution applied). The calling semantics
+in solidity are:
+
+ - the caller pushes return label, arg1, arg2, ..., argn
+ - the call returns with ret1, ret2, ..., retn
+
+This feature is still a bit cumbersome to use, because the stack offset essentially
+changes during the call, and thus references to local variables will be wrong.
+It is planned that the stack height changes can be specified in inline assembly.
+
+.. code::
+
+ contract C {
+ uint b;
+ function f(uint x) returns (uint r) {
+ assembly {
+ b pop // remove the offset, we know it is zero
+ sload
+ x
+ mul
+ =: r // assign to return variable r
+ }
+ }
+ }
+
+Labels
+------
+
+Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses
+which can change easily. Solidity inline assembly provides labels to make the use of
+jumps easier. The following code computes an element in the Fibonacci series.
+
+.. code::
+
+ {
+ let n := calldataload(4)
+ let a := 1
+ let b := a
+ loop:
+ jumpi(loopend, eq(n, 0))
+ a add swap1
+ n := sub(n, 1)
+ jump(loop)
+ loopend:
+ mstore(0, a)
+ return(0, 0x20)
+ }
+
+Please note that automatically accessing stack variables can only work if the
+assembler knows the current stack height. This fails to work if the jump source
+and target have different stack heights. It is still fine to use such jumps, but
+you should just not access any stack variables (even assembly variables) in that case.
+
+Furthermore, the stack height analyser goes through the code opcode by opcode
+(and not according to control flow), so in the following case, the assembler
+will have a wrong impression about the stack height at label ``two``:
+
+.. code::
+
+ {
+ jump(two)
+ one:
+ // Here the stack height is 1 (because we pushed 7),
+ // but the assembler thinks it is 0 because it reads
+ // from top to bottom.
+ // Accessing stack variables here will lead to errors.
+ jump(three)
+ two:
+ 7 // push something onto the stack
+ jump(one)
+ three:
+ }
+
+
+Declaring Assembly-Local Variables
+----------------------------------
+
+You can use the ``let`` keyword to declare variables that are only visible in
+inline assembly and actually only in the current ``{...}``-block. What happens
+is that the ``let`` instruction will create a new stack slot that is reserved
+for the variable and automatically removed again when the end of the block
+is reached. You need to provide an initial value for the variable which can
+be just ``0``, but it can also be a complex functional-style expression.
+
+.. code::
+
+ contract C {
+ function f(uint x) returns (uint b) {
+ assembly {
+ let v := add(x, 1)
+ mstore(0x80, v)
+ {
+ let y := add(sload(v), 1)
+ b := y
+ } // y is "deallocated" here
+ b := add(b, v)
+ } // v is "deallocated" here
+ }
+ }
+
+
+Assignments
+-----------
+
+Assignments are possible to assembly-local variables and to function-local
+variables. Take care that when you assign to variables that point to
+memory or storage, you will only change the pointer and not the data.
+
+There are two kinds of assignments: functional-style and instruction-style.
+For functional-style assignments (``variable := value``), you need to provide a value in a
+functional-style expression that results in exactly one stack value
+and for instruction-style (``=: variable``), the value is just taken from the stack top.
+For both ways, the colon points to the name of the variable. The assignment
+is performed by replacing the variable's value on the stack by the new value.
+
+.. code::
+
+ assembly {
+ let v := 0 // functional-style assignment as part of variable declaration
+ let g := add(v, 2)
+ sload(10)
+ =: v // instruction style assignment, puts the result of sload(10) into v
+ }
+
+Switch
+------
+
+You can use a switch statement as a very basic version of "if/else".
+It takes the value of an expression and compares it to several constants.
+The branch corresponding to the matching constant is taken. Contrary to the
+error-prone behaviour of some programming languages, control flow does
+not continue from one case to the next. There can be a fallback or default
+case called ``default``.
+
+.. code::
+
+ assembly {
+ let x := 0
+ switch calldataload(4)
+ case 0: {
+ x := calldataload(0x24)
+ }
+ default: {
+ x := calldataload(0x44)
+ }
+ sstore(0, div(x, 2))
+ }
+
+The list of cases does not require curly braces, but the body of a
+case does require them.
+
+Loops
+-----
+
+Assembly supports a simple for-style loop. For-style loops have
+a header containing an initializing part, a condition and a post-iteration
+part. The condition has to be a functional-style expression, while
+the other two can also be blocks. If the initializing part is a block that
+declares any variables, the scope of these variables is extended into the
+body (including the condition and the post-iteration part).
+
+The following example computes the sum of an area in memory.
+
+.. code::
+
+ assembly {
+ let x := 0
+ for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } {
+ x := add(x, mload(i))
+ }
+ }
+
+Functions
+---------
+
+Assembly allows the definition of low-level functions. These take their
+arguments (and a return PC) from the stack and also put the results onto the
+stack. Calling a function looks the same way as executing a functional-style
+opcode.
+
+Functions can be defined anywhere and are visible in the block they are
+declared in. Inside a function, you cannot access local variables
+defined outside of that function. There is no explicit ``return``
+statement.
+
+If you call a function that returns multiple values, you have to assign
+them to a tuple using ``(a, b) := f(x)`` or ``let (a, b) := f(x)``.
+
+The following example implements the power function by square-and-multiply.
+
+.. code::
+
+ assembly {
+ function power(base, exponent) -> (result) {
+ switch exponent
+ 0: { result := 1 }
+ 1: { result := base }
+ default: {
+ result := power(mul(base, base), div(exponent, 2))
+ switch mod(exponent, 2)
+ 1: { result := mul(base, result) }
+ }
+ }
+ }
+
+Things to Avoid
+---------------
+
+Inline assembly might have a quite high-level look, but it actually is extremely
+low-level. Function calls, loops and switches are converted by simple
+rewriting rules and after that, the only thing the assembler does for you is re-arranging
+functional-style opcodes, managing jump labels, counting stack height for
+variable access and removing stack slots for assembly-local variables when the end
+of their block is reached. Especially for those two last cases, it is important
+to know that the assembler only counts stack height from top to bottom, not
+necessarily following control flow. Furthermore, operations like swap will only
+swap the contents of the stack but not the location of variables.
+
+Conventions in Solidity
+-----------------------
+
+In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
+e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
+treat them as 256 bit numbers and the higher-order bits are only cleaned at the
+point where it is necessary, i.e. just shortly before they are written to memory
+or before comparisons are performed. This means that if you access such a variable
+from within inline assembly, you might have to manually clean the higher order bits
+first.
+
+Solidity manages memory in a very simple way: There is a "free memory pointer"
+at position ``0x40`` in memory. If you want to allocate memory, just use the memory
+from that point on and update the pointer accordingly.
+
+Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
+even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory
+arrays are pointers to memory arrays. The length of a dynamic array is stored at the
+first slot of the array and then only the array elements follow.
+
+.. warning::
+ Statically-sized memory arrays do not have a length field, but it will be added soon
+ to allow better convertibility between statically- and dynamically-sized arrays, so
+ please do not rely on that.
+
+
+Standalone Assembly
+===================
+
+The assembly language described as inline assembly above can also be used
+standalone and in fact, the plan is to use it as an intermediate language
+for the Solidity compiler. In this form, it tries to achieve several goals:
+
+1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
+2. The translation from assembly to bytecode should contain as few "surprises" as possible.
+3. Control flow should be easy to detect to help in formal verification and optimization.
+
+In order to achieve the first and last goal, assembly provides high-level constructs
+like ``for`` loops, ``switch`` statements and function calls. It should be possible
+to write assembly programs that do not make use of explicit ``SWAP``, ``DUP``,
+``JUMP`` and ``JUMPI`` statements, because the first two obfuscate the data flow
+and the last two obfuscate control flow. Furthermore, functional statements of
+the form ``mul(add(x, y), 7)`` are preferred over pure opcode statements like
+``7 y x add mul`` because in the first form, it is much easier to see which
+operand is used for which opcode.
+
+The second goal is achieved by introducing a desugaring phase that only removes
+the higher level constructs in a very regular way and still allows inspecting
+the generated low-level assembly code. The only non-local operation performed
+by the assembler is name lookup of user-defined identifiers (functions, variables, ...),
+which follow very simple and regular scoping rules and cleanup of local variables from the stack.
+
+Scoping: An identifier that is declared (label, variable, function, assembly)
+is only visible in the block where it was declared (including nested blocks
+inside the current block). It is not legal to access local variables across
+function borders, even if they would be in scope. Shadowing is allowed, but
+two identifiers with the same name cannot be declared in the same block.
+Local variables cannot be accessed before they were declared, but labels,
+functions and assemblies can. Assemblies are special blocks that are used
+for e.g. returning runtime code or creating contracts. No identifier from an
+outer assembly is visible in a sub-assembly.
+
+If control flow passes over the end of a block, pop instructions are inserted
+that match the number of local variables declared in that block, unless the
+``}`` is directly preceded by an opcode that does not have a continuing control
+flow path. Whenever a local variable is referenced, the code generator needs
+to know its current relative position in the stack and thus it needs to
+keep track of the current so-called stack height.
+At the end of a block, this implicit stack height is always reduced by the number
+of local variables whether ther is a continuing control flow or not.
+
+This means that the stack height before and after the block should be the same.
+If this is not the case, a warning is issued,
+unless the last instruction in the block did not have a continuing control flow path.
+
+Why do we use higher-level constructs like ``switch``, ``for`` and functions:
+
+Using ``switch``, ``for`` and functions, it should be possible to write
+complex code without using ``jump`` or ``jumpi`` manually. This makes it much
+easier to analyze the control flow, which allows for improved formal
+verification and optimization.
+
+Furthermore, if manual jumps are allowed, computing the stack height is rather complicated.
+The position of all local variables on the stack needs to be known, otherwise
+neither references to local variables nor removing local variables automatically
+from the stack at the end of a block will work properly. Because of that,
+every label that is preceded by an instruction that ends or diverts control flow
+should be annotated with the current stack layout. This annotation is performed
+automatically during the desugaring phase.
+
+Example:
+
+We will follow an example compilation from Solidity to desugared assembly.
+We consider the runtime bytecode of the following Solidity program::
+
+ contract C {
+ function f(uint x) returns (uint y) {
+ y = 1;
+ for (uint i = 0; i < x; i++)
+ y = 2 * y;
+ }
+ }
+
+The following assembly will be generated::
+
+ {
+ mstore(0x40, 0x60) // store the "free memory pointer"
+ // function dispatcher
+ switch div(calldataload(0), exp(2, 226))
+ case 0xb3de648b: {
+ let (r) = f(calldataload(4))
+ let ret := $allocate(0x20)
+ mstore(ret, r)
+ return(ret, 0x20)
+ }
+ default: { jump(invalidJumpLabel) }
+ // memory allocator
+ function $allocate(size) -> (pos) {
+ pos := mload(0x40)
+ mstore(0x40, add(pos, size))
+ }
+ // the contract function
+ function f(x) -> (y) {
+ y := 1
+ for { let i := 0 } lt(i, x) { i := add(i, 1) } {
+ y := mul(2, y)
+ }
+ }
+ }
+
+After the desugaring phase it looks as follows::
+
+ {
+ mstore(0x40, 0x60)
+ {
+ let $0 := div(calldataload(0), exp(2, 226))
+ jumpi($case1, eq($0, 0xb3de648b))
+ jump($caseDefault)
+ $case1:
+ {
+ // the function call - we put return label and arguments on the stack
+ $ret1 calldataload(4) jump($fun_f)
+ $ret1 [r]: // a label with a [...]-annotation resets the stack height
+ // to "current block + number of local variables". It also
+ // introduces a variable, r:
+ // r is at top of stack, $0 is below (from enclosing block)
+ $ret2 0x20 jump($fun_allocate)
+ $ret2 [ret]: // stack here: $0, r, ret (top)
+ mstore(ret, r)
+ return(ret, 0x20)
+ // although it is useless, the jump is automatically inserted,
+ // since the desugaring process does not analyze control-flow
+ jump($endswitch)
+ }
+ $caseDefault:
+ {
+ jump(invalidJumpLabel)
+ jump($endswitch)
+ }
+ $endswitch:
+ }
+ jump($afterFunction)
+ $fun_allocate:
+ {
+ $start[$retpos, size]:
+ // output variables live in the same scope as the arguments.
+ let pos := 0
+ {
+ pos := mload(0x40)
+ mstore(0x40, add(pos, size))
+ }
+ swap1 pop swap1 jump
+ }
+ $fun_f:
+ {
+ start [$retpos, x]:
+ let y := 0
+ {
+ let i := 0
+ $for_begin:
+ jumpi($for_end, iszero(lt(i, x)))
+ {
+ y := mul(2, y)
+ }
+ $for_continue:
+ { i := add(i, 1) }
+ jump($for_begin)
+ $for_end:
+ } // Here, a pop instruction is inserted for i
+ swap1 pop swap1 jump
+ }
+ $afterFunction:
+ stop
+ }
+
+
+Assembly happens in four stages:
+
+1. Parsing
+2. Desugaring (removes switch, for and functions)
+3. Opcode stream generation
+4. Bytecode generation
+
+We will specify steps one to three in a pseudo-formal way. More formal
+specifications will follow.
+
+
+Parsing / Grammar
+-----------------
+
+The tasks of the parser are the following:
+
+- Turn the byte stream into a token stream, discarding C++-style comments
+ (a special comment exists for source references, but we will not explain it here).
+- Turn the token stream into an AST according to the grammar below
+- Register identifiers with the block they are defined in (annotation to the
+ AST node) and note from which point on, variables can be accessed.
+
+The assembly lexer follows the one defined by Solidity itself.
+
+Whitespace is used to delimit tokens and it consists of the characters
+Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and
+are interpreted in the same way as Whitespace.
+
+Grammar::
+
+ AssemblyBlock = '{' AssemblyItem* '}'
+ AssemblyItem =
+ Identifier |
+ AssemblyBlock |
+ FunctionalAssemblyExpression |
+ AssemblyLocalDefinition |
+ FunctionalAssemblyAssignment |
+ AssemblyAssignment |
+ LabelDefinition |
+ AssemblySwitch |
+ AssemblyFunctionDefinition |
+ AssemblyFor |
+ 'break' | 'continue' |
+ SubAssembly | 'dataSize' '(' Identifier ')' |
+ LinkerSymbol |
+ 'errorLabel' | 'bytecodeSize' |
+ NumberLiteral | StringLiteral | HexLiteral
+ Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
+ FunctionalAssemblyExpression = Identifier '(' ( AssemblyItem ( ',' AssemblyItem )* )? ')'
+ AssemblyLocalDefinition = 'let' IdentifierOrList ':=' FunctionalAssemblyExpression
+ FunctionalAssemblyAssignment = IdentifierOrList ':=' FunctionalAssemblyExpression
+ IdentifierOrList = Identifier | '(' IdentifierList ')'
+ IdentifierList = Identifier ( ',' Identifier)*
+ AssemblyAssignment = '=:' Identifier
+ LabelDefinition = Identifier ( '[' ( IdentifierList | NumberLiteral ) ']' )? ':'
+ AssemblySwitch = 'switch' FunctionalAssemblyExpression AssemblyCase*
+ ( 'default' ':' AssemblyBlock )?
+ AssemblyCase = 'case' FunctionalAssemblyExpression ':' AssemblyBlock
+ AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')'
+ ( '->' '(' IdentifierList ')' )? AssemblyBlock
+ AssemblyFor = 'for' ( AssemblyBlock | FunctionalAssemblyExpression)
+ FunctionalAssemblyExpression ( AssemblyBlock | FunctionalAssemblyExpression) AssemblyBlock
+ SubAssembly = 'assembly' Identifier AssemblyBlock
+ LinkerSymbol = 'linkerSymbol' '(' StringLiteral ')'
+ NumberLiteral = HexNumber | DecimalNumber
+ HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
+ StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
+ HexNumber = '0x' [0-9a-fA-F]+
+ DecimalNumber = [0-9]+
+
+
+Desugaring
+----------
+
+An AST transformation removes for, switch and function constructs. The result
+is still parseable by the same parser, but it will not use certain constructs.
+If jumpdests are added that are only jumped to and not continued at, information
+about the stack content is added, unless no local variables of outer scopes are
+accessed or the stack height is the same as for the previous instruction.
+
+Pseudocode::
+
+ desugar item: AST -> AST =
+ match item {
+ AssemblyFunctionDefinition('function' name '(' arg1, ..., argn ')' '->' ( '(' ret1, ..., retm ')' body) ->
+ <name>:
+ {
+ $<name>_start [$retPC, $argn, ..., arg1]:
+ let ret1 := 0 ... let retm := 0
+ { desugar(body) }
+ swap and pop items so that only ret1, ... retn, $retPC are left on the stack
+ jump
+ }
+ AssemblyFor('for' { init } condition post body) ->
+ {
+ init // cannot be its own block because we want variable scope to extend into the body
+ // find I such that there are no labels $forI_*
+ $forI_begin:
+ jumpi($forI_end, iszero(condition))
+ { body }
+ $forI_continue:
+ { post }
+ jump($forI_begin)
+ $forI_end:
+ }
+ 'break' ->
+ {
+ // find nearest enclosing scope with label $forI_end
+ pop all local variables that are defined at the current point
+ but not at $forI_end
+ jump($forI_end)
+ }
+ 'continue' ->
+ {
+ // find nearest enclosing scope with label $forI_continue
+ pop all local variables that are defined at the current point
+ but not at $forI_continue
+ jump($forI_continue)
+ }
+ AssemblySwitch(switch condition cases ( default: defaultBlock )? ) ->
+ {
+ // find I such that there is no $switchI* label or variable
+ let $switchI_value := condition
+ for each of cases match {
+ case val: -> jumpi($switchI_caseJ, eq($switchI_value, val))
+ }
+ if default block present: ->
+ { defaultBlock jump($switchI_end) }
+ for each of cases match {
+ case val: { body } -> $switchI_caseJ: { body jump($switchI_end) }
+ }
+ $switchI_end:
+ }
+ FunctionalAssemblyExpression( identifier(arg1, arg2, ..., argn) ) ->
+ {
+ if identifier is function <name> with n args and m ret values ->
+ {
+ // find I such that $funcallI_* does not exist
+ $funcallI_return argn ... arg2 arg1 jump(<name>)
+ if the current context is `let (id1, ..., idm) := f(...)` ->
+ $funcallI_return [id1, ..., idm]:
+ else ->
+ $funcallI_return[m - n - 1]:
+ turn the functional expression that leads to the function call
+ into a statement stream
+ }
+ else -> desugar(children of node)
+ }
+ default node ->
+ desugar(children of node)
+ }
+
+Opcode Stream Generation
+------------------------
+
+During opcode stream generation, we keep track of the current stack height,
+so that accessing stack variables by name is possible.
+
+Pseudocode::
+
+ codegen item: AST -> opcode_stream =
+ match item {
+ AssemblyBlock({ items }) ->
+ join(codegen(item) for item in items)
+ if last generated opcode has continuing control flow:
+ POP for all local variables registered at the block (including variables
+ introduced by labels)
+ warn if the stack height at this point is not the same as at the start of the block
+ Identifier(id) ->
+ lookup id in the syntactic stack of blocks
+ match type of id
+ Local Variable ->
+ DUPi where i = 1 + stack_height - stack_height_of_identifier(id)
+ Label ->
+ // reference to be resolved during bytecode generation
+ PUSH<bytecode position of label>
+ SubAssembly ->
+ PUSH<bytecode position of subassembly data>
+ FunctionalAssemblyExpression(id ( arguments ) ) ->
+ join(codegen(arg) for arg in arguments.reversed())
+ id (which has to be an opcode, might be a function name later)
+ AssemblyLocalDefinition(let (id1, ..., idn) := expr) ->
+ register identifiers id1, ..., idn as locals in current block at current stack height
+ codegen(expr) - assert that expr returns n items to the stack
+ FunctionalAssemblyAssignment((id1, ..., idn) := expr) ->
+ lookup id1, ..., idn in the syntactic stack of blocks, assert that they are variables
+ codegen(expr)
+ for j = n, ..., i:
+ SWAPi where i = 1 + stack_height - stack_height_of_identifier(idj)
+ POP
+ AssemblyAssignment(=: id) ->
+ look up id in the syntactic stack of blocks, assert that it is a variable
+ SWAPi where i = 1 + stack_height - stack_height_of_identifier(id)
+ POP
+ LabelDefinition(name [id1, ..., idn] :) ->
+ JUMPDEST
+ // register new variables id1, ..., idn and set the stack height to
+ // stack_height_at_block_start + number_of_local_variables
+ LabelDefinition(name [number] :) ->
+ JUMPDEST
+ // adjust stack height by +number (can be negative)
+ NumberLiteral(num) ->
+ PUSH<num interpreted as decimal and right-aligned>
+ HexLiteral(lit) ->
+ PUSH32<lit interpreted as hex and left-aligned>
+ StringLiteral(lit) ->
+ PUSH32<lit utf-8 encoded and left-aligned>
+ SubAssembly(assembly <name> block) ->
+ append codegen(block) at the end of the code
+ dataSize(<name>) ->
+ assert that <name> is a subassembly ->
+ PUSH32<size of code generated from subassembly <name>>
+ linkerSymbol(<lit>) ->
+ PUSH32<zeros> and append position to linker table
+ }
diff --git a/docs/solidity-in-depth.rst b/docs/solidity-in-depth.rst
index 40704698..b6217b47 100644
--- a/docs/solidity-in-depth.rst
+++ b/docs/solidity-in-depth.rst
@@ -16,4 +16,5 @@ If something is missing here, please contact us on
units-and-global-variables.rst
control-structures.rst
contracts.rst
+ assembly.rst
miscellaneous.rst