aboutsummaryrefslogtreecommitdiffstats
path: root/docs/miscellaneous.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/miscellaneous.rst')
-rw-r--r--docs/miscellaneous.rst120
1 files changed, 61 insertions, 59 deletions
diff --git a/docs/miscellaneous.rst b/docs/miscellaneous.rst
index 4a7b8438..6b327c56 100644
--- a/docs/miscellaneous.rst
+++ b/docs/miscellaneous.rst
@@ -8,7 +8,7 @@ Miscellaneous
Layout of State Variables in Storage
************************************
-Statically-sized variables (everything except mapping and dynamically-sized array types) are laid out contiguously in storage starting from position `0`. Multiple items that need less than 32 bytes are packed into a single storage slot if possible, according to the following rules:
+Statically-sized variables (everything except mapping and dynamically-sized array types) are laid out contiguously in storage starting from position ``0``. Multiple items that need less than 32 bytes are packed into a single storage slot if possible, according to the following rules:
- The first item in a storage slot is stored lower-order aligned.
- Elementary types use only that many bytes that are necessary to store them.
@@ -17,17 +17,17 @@ Statically-sized variables (everything except mapping and dynamically-sized arra
The elements of structs and arrays are stored after each other, just as if they were given explicitly.
-Due to their unpredictable size, mapping and dynamically-sized array types use a `sha3`
+Due to their unpredictable size, mapping and dynamically-sized array types use a ``sha3``
computation to find the starting position of the value or the array data. These starting positions are always full stack slots.
The mapping or the dynamic array itself
-occupies an (unfilled) slot in storage at some position `p` according to the above rule (or by
+occupies an (unfilled) slot in storage at some position ``p`` according to the above rule (or by
recursively applying this rule for mappings to mappings or arrays of arrays). For a dynamic array, this slot stores the number of elements in the array (byte arrays and strings are an exception here, see below). For a mapping, the slot is unused (but it is needed so that two equal mappings after each other will use a different hash distribution).
-Array data is located at `sha3(p)` and the value corresponding to a mapping key
-`k` is located at `sha3(k . p)` where `.` is concatenation. If the value is again a
-non-elementary type, the positions are found by adding an offset of `sha3(k . p)`.
+Array data is located at ``sha3(p)`` and the value corresponding to a mapping key
+``k`` is located at ``sha3(k . p)`` where ``.`` is concatenation. If the value is again a
+non-elementary type, the positions are found by adding an offset of ``sha3(k . p)``.
-`bytes` and `string` store their data in the same slot where also the length is stored if they are short. In particular: If the data is at most `31` bytes long, it is stored in the higher-order bytes (left aligned) and the lowest-order byte stores `length * 2`. If it is longer, the main slot stores `length * 2 + 1` and the data is stored as usual in `sha3(slot)`.
+``bytes`` and ``string`` store their data in the same slot where also the length is stored if they are short. In particular: If the data is at most ``31`` bytes long, it is stored in the higher-order bytes (left aligned) and the lowest-order byte stores ``length * 2``. If it is longer, the main slot stores ``length * 2 + 1`` and the data is stored as usual in ``sha3(slot)``.
So for the following contract snippet::
@@ -37,13 +37,13 @@ So for the following contract snippet::
mapping(uint => mapping(uint => s)) data;
}
-The position of `data[4][9].b` is at `sha3(uint256(9) . sha3(uint256(4) . uint256(1))) + 1`.
+The position of ``data[4][9].b`` is at ``sha3(uint256(9) . sha3(uint256(4) . uint256(1))) + 1``.
*****************
Esoteric Features
*****************
-There are some types in Solidity's type system that have no counterpart in the syntax. One of these types are the types of functions. But still, using `var` it is possible to have local variables of these types::
+There are some types in Solidity's type system that have no counterpart in the syntax. One of these types are the types of functions. But still, using ``var`` it is possible to have local variables of these types::
contract FunctionSelector {
function select(bool useB, uint x) returns (uint z) {
@@ -61,7 +61,7 @@ There are some types in Solidity's type system that have no counterpart in the s
}
}
-Calling `select(false, x)` will compute `x * x` and `select(true, x)` will compute `2 * x`.
+Calling ``select(false, x)`` will compute ``x * x`` and ``select(true, x)`` will compute ``2 * x``.
.. index:: optimizer, common subexpression elimination, constant propagation
@@ -69,7 +69,7 @@ Calling `select(false, x)` will compute `x * x` and `select(true, x)` will compu
Internals - the Optimizer
*************************
-The Solidity optimizer operates on assembly, so it can be and also is used by other languages. It splits the sequence of instructions into basic blocks at JUMPs and JUMPDESTs. Inside these blocks, the instructions are analysed and every modification to the stack, to memory or storage is recorded as an expression which consists of an instruction and a list of arguments which are essentially pointers to other expressions. The main idea is now to find expressions that are always equal (on every input) and combine them into an expression class. The optimizer first tries to find each new expression in a list of already known expressions. If this does not work, the expression is simplified according to rules like `constant` + `constant` = `sum_of_constants` or `X` * 1 = `X`. Since this is done recursively, we can also apply the latter rule if the second factor is a more complex expression where we know that it will always evaluate to one. Modifications to storage and memory locations have to erase knowledge about storage and memory locations which are not known to be different: If we first write to location x and then to location y and both are input variables, the second could overwrite the first, so we actually do not know what is stored at x after we wrote to y. On the other hand, if a simplification of the expression x - y evaluates to a non-zero constant, we know that we can keep our knowledge about what is stored at x.
+The Solidity optimizer operates on assembly, so it can be and also is used by other languages. It splits the sequence of instructions into basic blocks at JUMPs and JUMPDESTs. Inside these blocks, the instructions are analysed and every modification to the stack, to memory or storage is recorded as an expression which consists of an instruction and a list of arguments which are essentially pointers to other expressions. The main idea is now to find expressions that are always equal (on every input) and combine them into an expression class. The optimizer first tries to find each new expression in a list of already known expressions. If this does not work, the expression is simplified according to rules like ``constant + constant = sum_of_constants`` or ``X * 1 = X``. Since this is done recursively, we can also apply the latter rule if the second factor is a more complex expression where we know that it will always evaluate to one. Modifications to storage and memory locations have to erase knowledge about storage and memory locations which are not known to be different: If we first write to location x and then to location y and both are input variables, the second could overwrite the first, so we actually do not know what is stored at x after we wrote to y. On the other hand, if a simplification of the expression x - y evaluates to a non-zero constant, we know that we can keep our knowledge about what is stored at x.
At the end of this process, we know which expressions have to be on the stack in the end and have a list of modifications to memory and storage. This information is stored together with the basic blocks and is used to link them. Furthermore, knowledge about the stack, storage and memory configuration is forwarded to the next block(s). If we know the targets of all JUMP and JUMPI instructions, we can build a complete control flow graph of the program. If there is only one target we do not know (this can happen as in principle, jump targets can be computed from inputs), we have to erase all knowledge about the input state of a block as it can be the target of the unknown JUMP. If a JUMPI is found whose condition evaluates to a constant, it is transformed to an unconditional jump.
@@ -103,41 +103,43 @@ even though the instructions contained a jump in the beginning.
Using the Commandline Compiler
******************************
-One of the build targets of the Solidity repository is `solc`, the solidity commandline compiler.
-Using `solc --help` provides you with an explanation of all options. The compiler can produce various outputs, ranging from simple binaries and assembly over an abstract syntax tree (parse tree) to estimations of gas usage.
-If you only want to compile a single file, you run it as `solc --bin sourceFile.sol` and it will print the binary. Before you deploy your contract, activate the optimizer while compiling using `solc --optimize --bin sourceFile.sol`. If you want to get some of the more advanced output variants of `solc`, it is probably better to tell it to output everything to separate files using `solc -o outputDirectory --bin --ast --asm sourceFile.sol`.
+One of the build targets of the Solidity repository is ``solc``, the solidity commandline compiler.
+Using ``solc --help`` provides you with an explanation of all options. The compiler can produce various outputs, ranging from simple binaries and assembly over an abstract syntax tree (parse tree) to estimations of gas usage.
+If you only want to compile a single file, you run it as ``solc --bin sourceFile.sol`` and it will print the binary. Before you deploy your contract, activate the optimizer while compiling using ``solc --optimize --bin sourceFile.sol``. If you want to get some of the more advanced output variants of ``solc``, it is probably better to tell it to output everything to separate files using ``solc -o outputDirectory --bin --ast --asm sourceFile.sol``.
The commandline compiler will automatically read imported files from the filesystem, but
-it is also possible to provide path redirects using `prefix=path` in the following way:
+it is also possible to provide path redirects using ``prefix=path`` in the following way:
+
+::
solc github.com/ethereum/dapp-bin/=/usr/local/lib/dapp-bin/ =/usr/local/lib/fallback file.sol
This essentially instructs the compiler to search for anything starting with
-`github.com/ethereum/dapp-bin/` under `/usr/local/lib/dapp-bin` and if it does not
-find the file there, it will look at `/usr/local/lib/fallback` (the empty prefix
-always matches). `solc` will not read files from the filesystem that lie outside of
+``github.com/ethereum/dapp-bin/`` under ``/usr/local/lib/dapp-bin`` and if it does not
+find the file there, it will look at ``/usr/local/lib/fallback`` (the empty prefix
+always matches). ``solc`` will not read files from the filesystem that lie outside of
the remapping targets and outside of the directories where explicitly specified source
-files reside, so things like `import "/etc/passwd";` only work if you add `=/` as a remapping.
+files reside, so things like ``import "/etc/passwd";`` only work if you add ``=/`` as a remapping.
If there are multiple matches due to remappings, the one with the longest common prefix is selected.
-If your contracts use :ref:`libraries <libraries>`, you will notice that the bytecode contains substrings of the form `__LibraryName______`. You can use `solc` as a linker meaning that it will insert the library addresses for you at those points:
+If your contracts use :ref:`libraries <libraries>`, you will notice that the bytecode contains substrings of the form ``__LibraryName______``. You can use ``solc`` as a linker meaning that it will insert the library addresses for you at those points:
-Either add `--libraries "Math:0x12345678901234567890 Heap:0xabcdef0123456"` to your command to provide an address for each library or store the string in a file (one library per line) and run `solc` using `--libraries fileName`.
+Either add ``--libraries "Math:0x12345678901234567890 Heap:0xabcdef0123456"`` to your command to provide an address for each library or store the string in a file (one library per line) and run ``solc`` using ``--libraries fileName``.
-If `solc` is called with the option `--link`, all input files are interpreted to be unlinked binaries (hex-encoded) in the `__LibraryName____`-format given above and are linked in-place (if the input is read from stdin, it is written to stdout). All options except `--libraries` are ignored (including `-o`) in this case.
+If ``solc`` is called with the option ``--link``, all input files are interpreted to be unlinked binaries (hex-encoded) in the ``__LibraryName____``-format given above and are linked in-place (if the input is read from stdin, it is written to stdout). All options except ``--libraries`` are ignored (including ``-o``) in this case.
***************
Tips and Tricks
***************
-* Use `delete` on arrays to delete all its elements.
+* Use ``delete`` on arrays to delete all its elements.
* Use shorter types for struct elements and sort them such that short types are grouped together. This can lower the gas costs as multiple SSTORE operations might be combined into a single (SSTORE costs 5000 or 20000 gas, so this is what you want to optimise). Use the gas price estimator (with optimiser enabled) to check!
* Make your state variables public - the compiler will create :ref:`getters <visibility-and-accessors>` for you for free.
* If you end up checking conditions on input or state a lot at the beginning of your functions, try using :ref:`modifiers`.
-* If your contract has a function called `send` but you want to use the built-in send-function, use `address(contractVariable).send(amount)`.
-* If you do **not** want your contracts to receive ether when called via `send`, you can add a throwing fallback function `function() { throw; }`.
-* Initialise storage structs with a single assignment: `x = MyStruct({a: 1, b: 2});`
+* If your contract has a function called ``send`` but you want to use the built-in send-function, use ``address(contractVariable).send(amount)``.
+* If you do **not** want your contracts to receive ether when called via ``send``, you can add a throwing fallback function ``function() { throw; }``.
+* Initialise storage structs with a single assignment: ``x = MyStruct({a: 1, b: 2});``
********
Pitfalls
@@ -145,7 +147,7 @@ Pitfalls
Unfortunately, there are some subtleties the compiler does not yet warn you about.
-- In `for (var i = 0; i < arrayName.length; i++) { ... }`, the type of `i` will be `uint8`, because this is the smallest type that is required to hold the value `0`. If the array has more than 255 elements, the loop will not terminate.
+- In ``for (var i = 0; i < arrayName.length; i++) { ... }``, the type of ``i`` will be ``uint8``, because this is the smallest type that is required to hold the value ``0``. If the array has more than 255 elements, the loop will not terminate.
**********
Cheatsheet
@@ -156,30 +158,30 @@ Cheatsheet
Global Variables
================
-- `block.coinbase` (`address`): current block miner's address
-- `block.difficulty` (`uint`): current block difficulty
-- `block.gaslimit` (`uint`): current block gaslimit
-- `block.number` (`uint`): current block number
-- `block.blockhash` (`function(uint) returns (bytes32)`): hash of the given block - only works for 256 most recent blocks
-- `block.timestamp` (`uint`): current block timestamp
-- `msg.data` (`bytes`): complete calldata
-- `msg.gas` (`uint`): remaining gas
-- `msg.sender` (`address`): sender of the message (current call)
-- `msg.value` (`uint`): number of wei sent with the message
-- `now` (`uint`): current block timestamp (alias for `block.timestamp`)
-- `tx.gasprice` (`uint`): gas price of the transaction
-- `tx.origin` (`address`): sender of the transaction (full call chain)
-- `sha3(...) returns (bytes32)`: compute the Ethereum-SHA3 hash of the (tightly packed) arguments
-- `sha256(...) returns (bytes32)`: compute the SHA256 hash of the (tightly packed) arguments
-- `ripemd160(...) returns (bytes20)`: compute RIPEMD of 256 the (tightly packed) arguments
-- `ecrecover(bytes32, uint8, bytes32, bytes32) returns (address)`: recover address associated with the public key from elliptic curve signature
-- `addmod(uint x, uint y, uint k) returns (uint)`: compute `(x + y) % k` where the addition is performed with arbitrary precision and does not wrap around at `2**256`.
-- `mulmod(uint x, uint y, uint k) returns (uint)`: compute `(x * y) % k` where the multiplication is performed with arbitrary precision and does not wrap around at `2**256`.
-- `this` (current contract's type): the current contract, explicitly convertible to `address`
-- `super`: the contract one level higher in the inheritance hierarchy
-- `selfdestruct(address)`: destroy the current contract, sending its funds to the given address
-- `<address>.balance`: balance of the address in Wei
-- `<address>.send(uint256) returns (bool)`: send given amount of Wei to address, returns `false` on failure.
+- ``block.coinbase`` (``address``): current block miner's address
+- ``block.difficulty`` (``uint``): current block difficulty
+- ``block.gaslimit`` (``uint``): current block gaslimit
+- ``block.number`` (``uint``): current block number
+- ``block.blockhash`` (``function(uint) returns (bytes32)``): hash of the given block - only works for 256 most recent blocks
+- ``block.timestamp`` (``uint``): current block timestamp
+- ``msg.data`` (``bytes``): complete calldata
+- ``msg.gas`` (``uint``): remaining gas
+- ``msg.sender`` (``address``): sender of the message (current call)
+- ``msg.value`` (``uint``): number of wei sent with the message
+- ``now`` (``uint``): current block timestamp (alias for ``block.timestamp``)
+- ``tx.gasprice`` (``uint``): gas price of the transaction
+- ``tx.origin`` (``address``): sender of the transaction (full call chain)
+- ``sha3(...) returns (bytes32)``: compute the Ethereum-SHA3 hash of the (tightly packed) arguments
+- ``sha256(...) returns (bytes32)``: compute the SHA256 hash of the (tightly packed) arguments
+- ``ripemd160(...) returns (bytes20)``: compute RIPEMD of 256 the (tightly packed) arguments
+- ``ecrecover(bytes32, uint8, bytes32, bytes32) returns (address)``: recover address associated with the public key from elliptic curve signature
+- ``addmod(uint x, uint y, uint k) returns (uint)``: compute ``(x + y) % k`` where the addition is performed with arbitrary precision and does not wrap around at ``2**256``.
+- ``mulmod(uint x, uint y, uint k) returns (uint)``: compute ``(x * y) % k`` where the multiplication is performed with arbitrary precision and does not wrap around at ``2**256``.
+- ``this`` (current contract's type): the current contract, explicitly convertible to ``address``
+- ``super``: the contract one level higher in the inheritance hierarchy
+- ``selfdestruct(address)``: destroy the current contract, sending its funds to the given address
+- ``<address>.balance``: balance of the address in Wei
+- ``<address>.send(uint256) returns (bool)``: send given amount of Wei to address, returns ``false`` on failure.
.. index:: visibility, public, private, external, internal
@@ -192,10 +194,10 @@ Function Visibility Specifiers
return true;
}
-- `public`: visible externally and internally (creates accessor function for storage/state variables)
-- `private`: only visible in the current contract
-- `external`: only visible externally (only for functions) - i.e. can only be message-called (via `this.fun`)
-- `internal`: only visible internally
+- ``public``: visible externally and internally (creates accessor function for storage/state variables)
+- ``private``: only visible in the current contract
+- ``external``: only visible externally (only for functions) - i.e. can only be message-called (via ``this.fun``)
+- ``internal``: only visible internally
.. index:: modifiers, constant, anonymous, indexed
@@ -203,8 +205,8 @@ Function Visibility Specifiers
Modifiers
=========
-- `constant` for state variables: Disallows assignment (except initialisation), does not occupy storage slot.
-- `constant` for functions: Disallows modification of state - this is not enforced yet.
-- `anonymous` for events: Does not store event signature as topic.
-- `indexed` for event parameters: Stores the parameter as topic.
+- ``constant`` for state variables: Disallows assignment (except initialisation), does not occupy storage slot.
+- ``constant`` for functions: Disallows modification of state - this is not enforced yet.
+- ``anonymous`` for events: Does not store event signature as topic.
+- ``indexed`` for event parameters: Stores the parameter as topic.