aboutsummaryrefslogtreecommitdiffstats
path: root/crypto.cpp
blob: 08236135a7dcc055f1ccd34daace353958f338be (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/** @file crypto.cpp
 * @author Gav Wood <i@gavwood.com>
 * @date 2014
 * Crypto test functions.
 */

#include <random>
#include <secp256k1/secp256k1.h>
#include <libdevcore/Common.h>
#include <libdevcore/RLP.h>
#include <libdevcore/Log.h>
#include <libethereum/Transaction.h>
#include <boost/test/unit_test.hpp>
#include <libdevcrypto/SHA3.h>
#include <libdevcrypto/ECDHE.h>
#include <libdevcrypto/CryptoPP.h>

using namespace std;
using namespace dev;
using namespace dev::crypto;
using namespace CryptoPP;

BOOST_AUTO_TEST_SUITE(devcrypto)

static Secp256k1 s_secp256k1;
static CryptoPP::AutoSeededRandomPool s_rng;
static CryptoPP::OID s_curveOID(CryptoPP::ASN1::secp256k1());
static CryptoPP::DL_GroupParameters_EC<CryptoPP::ECP> s_params(s_curveOID);
static CryptoPP::DL_GroupParameters_EC<CryptoPP::ECP>::EllipticCurve s_curve(s_params.GetCurve());

BOOST_AUTO_TEST_CASE(verify_secert)
{
    h256 empty;
    KeyPair kNot(empty);
    BOOST_REQUIRE(!kNot.address());
    KeyPair k(sha3(empty));
    BOOST_REQUIRE(k.address());
}

BOOST_AUTO_TEST_CASE(common_encrypt_decrypt)
{
    string message("Now is the time for all good persons to come to the aid of humanity.");
    bytes m = asBytes(message);
    bytesConstRef bcr(&m);

    KeyPair k = KeyPair::create();
    bytes cipher;
    encrypt(k.pub(), bcr, cipher);
    BOOST_REQUIRE(cipher != asBytes(message) && cipher.size() > 0);
    
    bytes plain;
    decrypt(k.sec(), bytesConstRef(&cipher), plain);
    
    BOOST_REQUIRE(asString(plain) == message);
    BOOST_REQUIRE(plain == asBytes(message));
}

BOOST_AUTO_TEST_CASE(cryptopp_cryptopp_secp256k1libport)
{
    secp256k1_start();
    
    // base secret
    Secret secret(sha3("privacy"));
    
    // we get ec params from signer
    ECDSA<ECP, SHA3_256>::Signer signer;
    
    // e := sha3(msg)
    bytes e(fromHex("0x01"));
    e.resize(32);
    int tests = 2;
    while (sha3(&e, &e), secret = sha3(secret.asBytes()), tests--)
    {
        KeyPair key(secret);
        Public pkey = key.pub();
        signer.AccessKey().Initialize(s_params, secretToExponent(secret));
        
        h256 he(sha3(e));
        Integer heInt(he.asBytes().data(), 32);
        h256 k(crypto::kdf(secret, he));
        Integer kInt(k.asBytes().data(), 32);
        kInt %= s_params.GetSubgroupOrder()-1;

        ECP::Point rp = s_params.ExponentiateBase(kInt);
        Integer const& q = s_params.GetGroupOrder();
        Integer r = s_params.ConvertElementToInteger(rp);

        Integer kInv = kInt.InverseMod(q);
        Integer s = (kInv * (Integer(secret.asBytes().data(), 32)*r + heInt)) % q;
        BOOST_REQUIRE(!!r && !!s);

        Signature sig;
        sig[64] = rp.y.IsOdd() ? 1 : 0;
        r.Encode(sig.data(), 32);
        s.Encode(sig.data() + 32, 32);

        Public p = dev::recover(sig, he);
        BOOST_REQUIRE(p == pkey);
        
        // verify w/cryptopp
        BOOST_REQUIRE(s_secp256k1.verify(pkey, sig, bytesConstRef(&e)));
        
        // verify with secp256k1lib
        byte encpub[65] = {0x04};
        memcpy(&encpub[1], pkey.data(), 64);
        byte dersig[72];
        size_t cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sig.data(), 64, DSA_P1363);
        BOOST_CHECK(cssz <= 72);
        BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(he.data(), sizeof(he), dersig, cssz, encpub, 65));
    }
}

BOOST_AUTO_TEST_CASE(cryptopp_ecdsa_sipaseckp256k1)
{
    secp256k1_start();
    
    // cryptopp integer encoding
    Integer nHex("f2ee15ea639b73fa3db9b34a245bdfa015c260c598b211bf05a1ecc4b3e3b4f2H");
    Integer nB(fromHex("f2ee15ea639b73fa3db9b34a245bdfa015c260c598b211bf05a1ecc4b3e3b4f2").data(), 32);
    BOOST_REQUIRE(nHex == nB);
    
    bytes sbytes(fromHex("0xFFFF"));
    Secret secret(sha3(sbytes));
    KeyPair key(secret);
    
    bytes m(1, 0xff);
    int tests = 2;
    while (m[0]++, tests--)
    {
        h256 hm(sha3(m));
        Integer hInt(hm.asBytes().data(), 32);
        h256 k(hm ^ key.sec());
        Integer kInt(k.asBytes().data(), 32);

        // raw sign w/cryptopp (doesn't pass through cryptopp hash filter)
        ECDSA<ECP, SHA3_256>::Signer signer;
        signer.AccessKey().Initialize(s_params, secretToExponent(key.sec()));
        Integer r, s;
        signer.RawSign(kInt, hInt, r, s);

        // verify cryptopp raw-signature w/cryptopp
        ECDSA<ECP, SHA3_256>::Verifier verifier;
        verifier.AccessKey().Initialize(s_params, publicToPoint(key.pub()));
        Signature sigppraw;
        r.Encode(sigppraw.data(), 32);
        s.Encode(sigppraw.data() + 32, 32);
        BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), sigppraw.data(), 64));
//      BOOST_REQUIRE(crypto::verify(key.pub(), sigppraw, bytesConstRef(&m)));
        BOOST_REQUIRE(dev::verify(key.pub(), sigppraw, hm));
        
        // sign with cryptopp, verify, recover w/sec256lib
        Signature seclibsig(dev::sign(key.sec(), hm));
        BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), seclibsig.data(), 64));
//      BOOST_REQUIRE(crypto::verify(key.pub(), seclibsig, bytesConstRef(&m)));
        BOOST_REQUIRE(dev::verify(key.pub(), seclibsig, hm));
        BOOST_REQUIRE(dev::recover(seclibsig, hm) == key.pub());

        // sign with cryptopp (w/hash filter?), verify with cryptopp
        bytes sigppb(signer.MaxSignatureLength());
        size_t ssz = signer.SignMessage(s_rng, m.data(), m.size(), sigppb.data());
        Signature sigpp;
        memcpy(sigpp.data(), sigppb.data(), 64);
        BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), sigppb.data(), ssz));
//      BOOST_REQUIRE(crypto::verify(key.pub(), sigpp, bytesConstRef(&m)));
        BOOST_REQUIRE(dev::verify(key.pub(), sigpp, hm));

        // sign with cryptopp and stringsource hash filter
        string sigstr;
        StringSource ssrc(asString(m), true, new SignerFilter(s_rng, signer, new StringSink(sigstr)));
        FixedHash<sizeof(Signature)> retsig((byte const*)sigstr.data(), Signature::ConstructFromPointer);
        BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), retsig.data(), 64));
//      BOOST_REQUIRE(crypto::verify(key.pub(), retsig, bytesConstRef(&m)));
        BOOST_REQUIRE(dev::verify(key.pub(), retsig, hm));
        
        /// verification w/sec256lib
        // requires public key and sig in standard format
        byte encpub[65] = {0x04};
        memcpy(&encpub[1], key.pub().data(), 64);
        byte dersig[72];
        
        // verify sec256lib sig w/sec256lib
        size_t cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, seclibsig.data(), 64, DSA_P1363);
        BOOST_CHECK(cssz <= 72);
        BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65));
        
        // verify cryptopp-raw sig w/sec256lib
        cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sigppraw.data(), 64, DSA_P1363);
        BOOST_CHECK(cssz <= 72);
        BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65));

        // verify cryptopp sig w/sec256lib
        cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sigppb.data(), 64, DSA_P1363);
        BOOST_CHECK(cssz <= 72);
        BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65));
    }
}

BOOST_AUTO_TEST_CASE(ecies_eckeypair)
{
    KeyPair k = KeyPair::create();

    string message("Now is the time for all good persons to come to the aid of humanity.");
    string original = message;
    
    bytes b = asBytes(message);
    s_secp256k1.encrypt(k.pub(), b);
    BOOST_REQUIRE(b != asBytes(original));

    s_secp256k1.decrypt(k.sec(), b);
    BOOST_REQUIRE(b == asBytes(original));
}

BOOST_AUTO_TEST_CASE(ecdh)
{
    cnote << "Testing ecdh...";

    ECDH<ECP>::Domain dhLocal(s_curveOID);
    SecByteBlock privLocal(dhLocal.PrivateKeyLength());
    SecByteBlock pubLocal(dhLocal.PublicKeyLength());
    dhLocal.GenerateKeyPair(s_rng, privLocal, pubLocal);
    
    ECDH<ECP>::Domain dhRemote(s_curveOID);
    SecByteBlock privRemote(dhRemote.PrivateKeyLength());
    SecByteBlock pubRemote(dhRemote.PublicKeyLength());
    dhRemote.GenerateKeyPair(s_rng, privRemote, pubRemote);
    
    assert(dhLocal.AgreedValueLength() == dhRemote.AgreedValueLength());
    
    // local: send public to remote; remote: send public to local
    
    // Local
    SecByteBlock sharedLocal(dhLocal.AgreedValueLength());
    assert(dhLocal.Agree(sharedLocal, privLocal, pubRemote));
    
    // Remote
    SecByteBlock sharedRemote(dhRemote.AgreedValueLength());
    assert(dhRemote.Agree(sharedRemote, privRemote, pubLocal));
    
    // Test
    Integer ssLocal, ssRemote;
    ssLocal.Decode(sharedLocal.BytePtr(), sharedLocal.SizeInBytes());
    ssRemote.Decode(sharedRemote.BytePtr(), sharedRemote.SizeInBytes());
    
    assert(ssLocal != 0);
    assert(ssLocal == ssRemote);
    
    
    // Now use our keys
    KeyPair a = KeyPair::create();
    byte puba[65] = {0x04};
    memcpy(&puba[1], a.pub().data(), 64);
    
    KeyPair b = KeyPair::create();
    byte pubb[65] = {0x04};
    memcpy(&pubb[1], b.pub().data(), 64);
    
    ECDH<ECP>::Domain dhA(s_curveOID);
    Secret shared;
    BOOST_REQUIRE(dhA.Agree(shared.data(), a.sec().data(), pubb));
    BOOST_REQUIRE(shared);
}

BOOST_AUTO_TEST_CASE(ecdhe)
{
    cnote << "Testing ecdhe...";
    
    ECDHE a, b;
    BOOST_CHECK_NE(a.pubkey(), b.pubkey());
    
    ECDHE local;
    ECDHE remote;
    
    // local tx pubkey -> remote
    Secret sremote;
    remote.agree(local.pubkey(), sremote);
    
    // remote tx pbukey -> local
    Secret slocal;
    local.agree(remote.pubkey(), slocal);

    BOOST_REQUIRE(sremote);
    BOOST_REQUIRE(slocal);
    BOOST_REQUIRE_EQUAL(sremote, slocal);
}

BOOST_AUTO_TEST_CASE(ecdhe_aes128_ctr_sha3mac)
{
    // New connections require new ECDH keypairs
    // Every new connection requires a new EC keypair
    // Every new trust requires a new EC keypair
    // All connections should share seed for PRF (or PRNG) for nonces
    
    
}

BOOST_AUTO_TEST_CASE(cryptopp_aes128_ctr)
{
    const int aesKeyLen = 16;
    BOOST_REQUIRE(sizeof(char) == sizeof(byte));
    
    // generate test key
    AutoSeededRandomPool rng;
    SecByteBlock key(0x00, aesKeyLen);
    rng.GenerateBlock(key, key.size());
    
    // cryptopp uses IV as nonce/counter which is same as using nonce w/0 ctr
    FixedHash<AES::BLOCKSIZE> ctr;
    rng.GenerateBlock(ctr.data(), sizeof(ctr));

    // used for decrypt
    FixedHash<AES::BLOCKSIZE> ctrcopy(ctr);
    
    string text = "Now is the time for all good persons to come to the aid of humanity.";
    unsigned char const* in = (unsigned char*)&text[0];
    unsigned char* out = (unsigned char*)&text[0];
    string original = text;
    string doublespeak = text + text;
    
    string cipherCopy;
    try
    {
        CTR_Mode<AES>::Encryption e;
        e.SetKeyWithIV(key, key.size(), ctr.data());
        
        // 68 % 255 should be difference of counter
        e.ProcessData(out, in, text.size());
        ctr = h128(u128(ctr) + text.size() % 16);
        
        BOOST_REQUIRE(text != original);
        cipherCopy = text;
    }
    catch(CryptoPP::Exception& e)
    {
        cerr << e.what() << endl;
    }
    
    try
    {
        CTR_Mode< AES >::Decryption d;
        d.SetKeyWithIV(key, key.size(), ctrcopy.data());
        d.ProcessData(out, in, text.size());
        BOOST_REQUIRE(text == original);
    }
    catch(CryptoPP::Exception& e)
    {
        cerr << e.what() << endl;
    }
    
    
    // reencrypt ciphertext...
    try
    {
        BOOST_REQUIRE(cipherCopy != text);
        in = (unsigned char*)&cipherCopy[0];
        out = (unsigned char*)&cipherCopy[0];
        
        CTR_Mode<AES>::Encryption e;
        e.SetKeyWithIV(key, key.size(), ctrcopy.data());
        e.ProcessData(out, in, text.size());
        
        // yep, ctr mode.
        BOOST_REQUIRE(cipherCopy == original);
    }
    catch(CryptoPP::Exception& e)
    {
        cerr << e.what() << endl;
    }
    
}

BOOST_AUTO_TEST_CASE(cryptopp_aes128_cbc)
{
    const int aesKeyLen = 16;
    BOOST_REQUIRE(sizeof(char) == sizeof(byte));
    
    AutoSeededRandomPool rng;
    SecByteBlock key(0x00, aesKeyLen);
    rng.GenerateBlock(key, key.size());
    
    // Generate random IV
    byte iv[AES::BLOCKSIZE];
    rng.GenerateBlock(iv, AES::BLOCKSIZE);
    
    string string128("AAAAAAAAAAAAAAAA");
    string plainOriginal = string128;
    
    CryptoPP::CBC_Mode<Rijndael>::Encryption cbcEncryption(key, key.size(), iv);
    cbcEncryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size());
    BOOST_REQUIRE(string128 != plainOriginal);
    
    CBC_Mode<Rijndael>::Decryption cbcDecryption(key, key.size(), iv);
    cbcDecryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size());
    BOOST_REQUIRE(plainOriginal == string128);
    
    
    // plaintext whose size isn't divisible by block size must use stream filter for padding
    string string192("AAAAAAAAAAAAAAAABBBBBBBB");
    plainOriginal = string192;

    string cipher;
    StreamTransformationFilter* aesStream = new StreamTransformationFilter(cbcEncryption, new StringSink(cipher));
    StringSource source(string192, true, aesStream);
    BOOST_REQUIRE(cipher.size() == 32);

    cbcDecryption.ProcessData((byte*)&cipher[0], (byte*)&string192[0], cipher.size());
    BOOST_REQUIRE(string192 == plainOriginal);
}

BOOST_AUTO_TEST_CASE(eth_keypairs)
{
    cnote << "Testing Crypto...";
    secp256k1_start();

    KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4")));
    BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f")));
    BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075")));
    {
        eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret());
        auto rlp = t.rlp(eth::WithoutSignature);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(eth::WithoutSignature);
        rlp = t.rlp(eth::WithSignature);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(eth::WithSignature);
        BOOST_REQUIRE(t.sender() == p.address());
    }

} 
 

int cryptoTest()
{
    cnote << "Testing Crypto...";
    secp256k1_start();

    KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4")));
    BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f")));
    BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075")));
    {
        eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret());
        auto rlp = t.rlp(eth::WithoutSignature);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(eth::WithoutSignature);
        rlp = t.rlp(eth::WithSignature);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(eth::WithSignature);
        assert(t.sender() == p.address());
    }


#if 0
    // Test transaction.
    bytes tx = fromHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d");
    cout << "TX: " << RLP(tx) << endl;

    Transaction t2(tx);
    cout << "SENDER: " << hex << t2.sender() << dec << endl;

    secp256k1_start();

    Transaction t;
    t.nonce = 0;
    t.value = 1;            // 1 wei.
    t.type = eth::Transaction::MessageCall;
    t.receiveAddress = toAddress(sha3("123"));

    bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s);
    cout << "SIG: " << sig64.size() << " " << toHex(sig64) << " " << t.vrs.v << endl;

    auto msg = t.rlp(false);
    cout << "TX w/o SIG: " << RLP(msg) << endl;
    cout << "RLP(TX w/o SIG): " << toHex(t.rlp(false)) << endl;
    std::string hmsg = sha3(t.rlp(false), false);
    cout << "SHA256(RLP(TX w/o SIG)): 0x" << toHex(hmsg) << endl;

    bytes privkey = sha3Bytes("123");

    {
        bytes pubkey(65);
        int pubkeylen = 65;

        int ret = secp256k1_ecdsa_seckey_verify(privkey.data());
        cout << "SEC: " << dec << ret << " " << toHex(privkey) << endl;

        ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1);
        pubkey.resize(pubkeylen);
        int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), (int)pubkey.size());
        cout << "PUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << (good ? " GOOD" : " BAD") << endl;
    }

    // Test roundtrip...
    {
        bytes sig(64);
        u256 nonce = 0;
        int v = 0;
        cout << toHex(hmsg) << endl;
        cout << toHex(privkey) << endl;
        cout << hex << nonce << dec << endl;
        int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), (int)hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v);
        cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << toHex(sig) << " " << v << endl;

        bytes pubkey(65);
        int pubkeylen = 65;
        ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v);
        pubkey.resize(pubkeylen);
        cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl;
    }

    {
        bytes pubkey(65);
        int pubkeylen = 65;
        int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27);
        pubkey.resize(pubkeylen);
        cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl;
        cout << "SENDER: " << hex << toAddress(dev::sha3(bytesConstRef(&pubkey).cropped(1))) << dec << endl;
    }
#endif
    return 0;
}

BOOST_AUTO_TEST_SUITE_END()