aboutsummaryrefslogtreecommitdiffstats
path: root/crypto.cpp
blob: cc35670af09c34d2fb1786631ed16a20a69c20f6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/** @file crypto.cpp
 * @author Gav Wood <i@gavwood.com>
 * @date 2014
 * Crypto test functions.
 */

#include <random>
#include <secp256k1/secp256k1.h>
#include <libdevcore/Common.h>
#include <libdevcore/RLP.h>
#include <libdevcore/Log.h>
#include <libethereum/Transaction.h>
#include <boost/test/unit_test.hpp>
#include <libdevcrypto/EC.h>
#include "TestHelperCrypto.h"

using namespace std;
using namespace dev;
using namespace dev::crypto;
using namespace CryptoPP;

BOOST_AUTO_TEST_SUITE(devcrypto)

BOOST_AUTO_TEST_CASE(common_encrypt_decrypt)
{
    string message("Now is the time for all good persons to come to the aide of humanity.");
    bytes m = asBytes(message);
    bytesConstRef bcr(&m);

    KeyPair k = KeyPair::create();
    bytes cipher;
    encrypt(k.pub(), bcr, cipher);
    assert(cipher != asBytes(message) && cipher.size() > 0);
    
    bytes plain;
    decrypt(k.sec(), bytesConstRef(&cipher), plain);
    
    assert(asString(plain) == message);
    assert(plain == asBytes(message));
}

BOOST_AUTO_TEST_CASE(cryptopp_vs_secp256k1)
{
    ECIES<ECP>::Decryptor d(pp::PRNG(), pp::secp256k1());
    ECIES<ECP>::Encryptor e(d.GetKey());
    
    Secret s;
    pp::SecretFromDL_PrivateKey_EC(d.GetKey(), s);
    
    Public p;
    pp::PublicFromDL_PublicKey_EC(e.GetKey(), p);
    
    assert(dev::toAddress(s) == right160(dev::sha3(p.ref())));
    
    Secret previous = s;
    for (auto i = 0; i < 30; i++)
    {
        ECIES<ECP>::Decryptor d(pp::PRNG(), pp::secp256k1());
        ECIES<ECP>::Encryptor e(d.GetKey());
        
        Secret s;
        pp::SecretFromDL_PrivateKey_EC(d.GetKey(), s);
        assert(s != previous);
        
        Public p;
        pp::PublicFromDL_PublicKey_EC(e.GetKey(), p);

        assert(dev::toAddress(s) == right160(dev::sha3(p.ref())));
    }
}

BOOST_AUTO_TEST_CASE(cryptopp_keys_cryptor_sipaseckp256k1)
{
    KeyPair k = KeyPair::create();
    Secret s = k.sec();
    
    // Convert secret to exponent used by pp
    Integer e = pp::ExponentFromSecret(s);

    // Test that exported DL_EC private is same as exponent from Secret
    CryptoPP::DL_PrivateKey_EC<CryptoPP::ECP> privatek;
    privatek.AccessGroupParameters().Initialize(pp::secp256k1());
    privatek.SetPrivateExponent(e);
    assert(e == privatek.GetPrivateExponent());
    
    // Test that exported secret is same as decryptor(privatek) secret
    ECIES<ECP>::Decryptor d;
    d.AccessKey().AccessGroupParameters().Initialize(pp::secp256k1());
    d.AccessKey().SetPrivateExponent(e);
    assert(d.AccessKey().GetPrivateExponent() == e);
    
    // Test that decryptor->encryptor->public == private->makepublic->public
    CryptoPP::DL_PublicKey_EC<CryptoPP::ECP> pubk;
    pubk.AccessGroupParameters().Initialize(pp::secp256k1());
    privatek.MakePublicKey(pubk);
    
    ECIES<ECP>::Encryptor enc(d);
    assert(pubk.GetPublicElement() == enc.AccessKey().GetPublicElement());
    
    // Test against sipa/seckp256k1
    Public p;
    pp::PublicFromExponent(pp::ExponentFromSecret(s), p);
    assert(toAddress(s) == dev::right160(dev::sha3(p.ref())));
    assert(k.pub() == p);
}

BOOST_AUTO_TEST_CASE(cryptopp_public_export_import)
{
    ECIES<ECP>::Decryptor d(pp::PRNG(), pp::secp256k1());
    ECIES<ECP>::Encryptor e(d.GetKey());

    Secret s;
    pp::SecretFromDL_PrivateKey_EC(d.GetKey(), s);
    Public p;
    pp::PublicFromDL_PublicKey_EC(e.GetKey(), p);
    Address addr = right160(dev::sha3(p.ref()));
    assert(toAddress(s) == addr);
    
    KeyPair l(s);
    assert(l.address() == addr);
    
    DL_PublicKey_EC<ECP> pub;
    pub.Initialize(pp::secp256k1(), pp::PointFromPublic(p));
    assert(pub.GetPublicElement() == e.GetKey().GetPublicElement());

    KeyPair k = KeyPair::create();
    Public p2;
    pp::PublicFromExponent(pp::ExponentFromSecret(k.sec()), p2);
    assert(k.pub() == p2);
    
    Address a = k.address();
    Address a2 = toAddress(k.sec());
    assert(a2 == a);
}

BOOST_AUTO_TEST_CASE(ecies_eckeypair)
{
    KeyPair k = KeyPair::create();

    string message("Now is the time for all good persons to come to the aide of humanity.");
    string original = message;
    
    bytes b = asBytes(message);
    encrypt(k.pub(), b);
    assert(b != asBytes(original));

    decrypt(k.sec(), b);
    assert(b == asBytes(original));
}

BOOST_AUTO_TEST_CASE(ecdhe_aes128_ctr_sha3mac)
{
    // New connections require new ECDH keypairs
    // Every new connection requires a new EC keypair
    // Every new trust requires a new EC keypair
    // All connections should share seed for PRF (or PRNG) for nonces
    
    
    
    
    
}

BOOST_AUTO_TEST_CASE(cryptopp_ecies_message)
{
    cnote << "Testing cryptopp_ecies_message...";

    string const message("Now is the time for all good persons to come to the aide of humanity.");

    ECIES<ECP>::Decryptor localDecryptor(pp::PRNG(), pp::secp256k1());
    SavePrivateKey(localDecryptor.GetPrivateKey());
    
    ECIES<ECP>::Encryptor localEncryptor(localDecryptor);
    SavePublicKey(localEncryptor.GetPublicKey());

    ECIES<ECP>::Decryptor futureDecryptor;
    LoadPrivateKey(futureDecryptor.AccessPrivateKey());
    futureDecryptor.GetPrivateKey().ThrowIfInvalid(pp::PRNG(), 3);
    
    ECIES<ECP>::Encryptor futureEncryptor;
    LoadPublicKey(futureEncryptor.AccessPublicKey());
    futureEncryptor.GetPublicKey().ThrowIfInvalid(pp::PRNG(), 3);

    // encrypt/decrypt with local
    string cipherLocal;
    StringSource ss1 (message, true, new PK_EncryptorFilter(pp::PRNG(), localEncryptor, new StringSink(cipherLocal) ) );
    string plainLocal;
    StringSource ss2 (cipherLocal, true, new PK_DecryptorFilter(pp::PRNG(), localDecryptor, new StringSink(plainLocal) ) );

    // encrypt/decrypt with future
    string cipherFuture;
    StringSource ss3 (message, true, new PK_EncryptorFilter(pp::PRNG(), futureEncryptor, new StringSink(cipherFuture) ) );
    string plainFuture;
    StringSource ss4 (cipherFuture, true, new PK_DecryptorFilter(pp::PRNG(), futureDecryptor, new StringSink(plainFuture) ) );
    
    // decrypt local w/future
    string plainFutureFromLocal;
    StringSource ss5 (cipherLocal, true, new PK_DecryptorFilter(pp::PRNG(), futureDecryptor, new StringSink(plainFutureFromLocal) ) );
    
    // decrypt future w/local
    string plainLocalFromFuture;
    StringSource ss6 (cipherFuture, true, new PK_DecryptorFilter(pp::PRNG(), localDecryptor, new StringSink(plainLocalFromFuture) ) );
    
    
    assert(plainLocal == message);
    assert(plainFuture == plainLocal);
    assert(plainFutureFromLocal == plainLocal);
    assert(plainLocalFromFuture == plainLocal);
}

BOOST_AUTO_TEST_CASE(cryptopp_aes128_ctr)
{
    const int aesKeyLen = 16;
    assert(sizeof(char) == sizeof(byte));
    
    // generate test key
    AutoSeededRandomPool rng;
    SecByteBlock key(0x00, aesKeyLen);
    rng.GenerateBlock(key, key.size());
    
    // cryptopp uses IV as nonce/counter which is same as using nonce w/0 ctr
    byte ctr[AES::BLOCKSIZE];
    rng.GenerateBlock(ctr, sizeof(ctr));
    
    string text = "Now is the time for all good persons to come to the aide of humanity.";
    // c++11 ftw
    unsigned char const* in = (unsigned char*)&text[0];
    unsigned char* out = (unsigned char*)&text[0];
    string original = text;
    
    string cipherCopy;
    try
    {
        CTR_Mode<AES>::Encryption e;
        e.SetKeyWithIV(key, key.size(), ctr);
        e.ProcessData(out, in, text.size());
        assert(text != original);
        cipherCopy = text;
    }
    catch(CryptoPP::Exception& e)
    {
        cerr << e.what() << endl;
    }
    
    try
    {
        CTR_Mode< AES >::Decryption d;
        d.SetKeyWithIV(key, key.size(), ctr);
        d.ProcessData(out, in, text.size());
        assert(text == original);
    }
    catch(CryptoPP::Exception& e)
    {
        cerr << e.what() << endl;
    }
    
    
    // reencrypt ciphertext...
    try
    {
        assert(cipherCopy != text);
        in = (unsigned char*)&cipherCopy[0];
        out = (unsigned char*)&cipherCopy[0];
        
        CTR_Mode<AES>::Encryption e;
        e.SetKeyWithIV(key, key.size(), ctr);
        e.ProcessData(out, in, text.size());
        
        // yep, ctr mode.
        assert(cipherCopy == original);
    }
    catch(CryptoPP::Exception& e)
    {
        cerr << e.what() << endl;
    }
    
}

BOOST_AUTO_TEST_CASE(cryptopp_aes128_cbc)
{
    const int aesKeyLen = 16;
    assert(sizeof(char) == sizeof(byte));
    
    AutoSeededRandomPool rng;
    SecByteBlock key(0x00, aesKeyLen);
    rng.GenerateBlock(key, key.size());
    
    // Generate random IV
    byte iv[AES::BLOCKSIZE];
    rng.GenerateBlock(iv, AES::BLOCKSIZE);
    
    string string128("AAAAAAAAAAAAAAAA");
    string plainOriginal = string128;
    
    CryptoPP::CBC_Mode<Rijndael>::Encryption cbcEncryption(key, key.size(), iv);
    cbcEncryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size());
    assert(string128 != plainOriginal);
    
    CBC_Mode<Rijndael>::Decryption cbcDecryption(key, key.size(), iv);
    cbcDecryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size());
    assert(plainOriginal == string128);
    
    
    // plaintext whose size isn't divisible by block size must use stream filter for padding
    string string192("AAAAAAAAAAAAAAAABBBBBBBB");
    plainOriginal = string192;

    string cipher;
    StreamTransformationFilter* aesStream = new StreamTransformationFilter(cbcEncryption, new StringSink(cipher));
    StringSource source(string192, true, aesStream);
    assert(cipher.size() == 32);

    cbcDecryption.ProcessData((byte*)&cipher[0], (byte*)&string192[0], cipher.size());
    assert(string192 == plainOriginal);
}

BOOST_AUTO_TEST_CASE(eth_keypairs)
{
    cnote << "Testing Crypto...";
    secp256k1_start();

    KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4")));
    BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f")));
    BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075")));
    {
        eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret());
        auto rlp = t.rlp(false);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(false);
        rlp = t.rlp(true);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(true);
        BOOST_REQUIRE(t.sender() == p.address());
    }

} 
 

int cryptoTest()
{
    cnote << "Testing Crypto...";
    secp256k1_start();

    KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4")));
    assert(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f")));
    assert(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075")));
    {
        eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret());
        auto rlp = t.rlp(false);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(false);
        rlp = t.rlp(true);
        cnote << RLP(rlp);
        cnote << toHex(rlp);
        cnote << t.sha3(true);
        assert(t.sender() == p.address());
    }


#if 0
    // Test transaction.
    bytes tx = fromHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d");
    cout << "TX: " << RLP(tx) << endl;

    Transaction t2(tx);
    cout << "SENDER: " << hex << t2.sender() << dec << endl;

    secp256k1_start();

    Transaction t;
    t.nonce = 0;
    t.value = 1;            // 1 wei.
    t.type = eth::Transaction::MessageCall;
    t.receiveAddress = toAddress(sha3("123"));

    bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s);
    cout << "SIG: " << sig64.size() << " " << toHex(sig64) << " " << t.vrs.v << endl;

    auto msg = t.rlp(false);
    cout << "TX w/o SIG: " << RLP(msg) << endl;
    cout << "RLP(TX w/o SIG): " << toHex(t.rlp(false)) << endl;
    std::string hmsg = sha3(t.rlp(false), false);
    cout << "SHA256(RLP(TX w/o SIG)): 0x" << toHex(hmsg) << endl;

    bytes privkey = sha3Bytes("123");

    {
        bytes pubkey(65);
        int pubkeylen = 65;

        int ret = secp256k1_ecdsa_seckey_verify(privkey.data());
        cout << "SEC: " << dec << ret << " " << toHex(privkey) << endl;

        ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1);
        pubkey.resize(pubkeylen);
        int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), (int)pubkey.size());
        cout << "PUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << (good ? " GOOD" : " BAD") << endl;
    }

    // Test roundtrip...
    {
        bytes sig(64);
        u256 nonce = 0;
        int v = 0;
        cout << toHex(hmsg) << endl;
        cout << toHex(privkey) << endl;
        cout << hex << nonce << dec << endl;
        int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), (int)hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v);
        cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << toHex(sig) << " " << v << endl;

        bytes pubkey(65);
        int pubkeylen = 65;
        ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v);
        pubkey.resize(pubkeylen);
        cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl;
    }

    {
        bytes pubkey(65);
        int pubkeylen = 65;
        int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27);
        pubkey.resize(pubkeylen);
        cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl;
        cout << "SENDER: " << hex << toAddress(dev::sha3(bytesConstRef(&pubkey).cropped(1))) << dec << endl;
    }
#endif
    return 0;
}

BOOST_AUTO_TEST_SUITE_END()