aboutsummaryrefslogtreecommitdiffstats
path: root/docs/assembly.rst
blob: 5bb9825aa90c222dbba609e395d51f46b1e4c12b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
#################
Solidity Assembly
#################

.. index:: ! assembly, ! asm, ! evmasm

Solidity defines an assembly language that you can use without Solidity and also
as "inline assembly" inside Solidity source code. This guide starts with describing
how to use inline assembly, how it differs from standalone assembly, and
specifies assembly itself.

.. _inline-assembly:

Inline Assembly
===============

You can interleave Solidity statements with inline assembly in a language close
to the one of the virtual machine. This gives you more fine-grained control,
especially when you are enhancing the language by writing libraries.

As the EVM is a stack machine, it is often hard to address the correct stack slot
and provide arguments to opcodes at the correct point on the stack. Solidity's inline
assembly helps you do this, and with other issues that arise when writing manual assembly.

Inline assembly has the following features:

* functional-style opcodes: ``mul(1, add(2, 3))``
* assembly-local variables: ``let x := add(2, 3)  let y := mload(0x40)  x := add(x, y)``
* access to external variables: ``function f(uint x) public { assembly { x := sub(x, 1) } }``
* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }``
* if statements: ``if slt(x, 0) { x := sub(0, x) }``
* switch statements: ``switch x case 0 { y := mul(x, 2) } default { y := 0 }``
* function calls: ``function f(x) -> y { switch x case 0 { y := 1 } default { y := mul(x, f(sub(x, 1))) }   }``

.. warning::
    Inline assembly is a way to access the Ethereum Virtual Machine
    at a low level. This bypasses several important safety
    features and checks of Solidity. You should only use it for
    tasks that need it, and only if you are confident with using it.

Syntax
------

Assembly parses comments, literals and identifiers in the same way as Solidity, so you can use the
usual ``//`` and ``/* */`` comments. Inline assembly is marked by ``assembly { ... }`` and inside
these curly braces, you can use the following (see the later sections for more details):

 - literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
 - opcodes in functional style, e.g. ``add(1, mlod(0))``
 - variable declarations, e.g. ``let x := 7``, ``let x := add(y, 3)`` or ``let x`` (initial value of empty (0) is assigned)
 - identifiers (assembly-local variables and externals if used as inline assembly), e.g. ``add(3, x)``, ``sstore(x_slot, 2)``
 - assignments, e.g. ``x := add(y, 3)``
 - blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }``

The following features are only available for standalone assembly:

 - direct stack control via ``dup1``, ``swap1``, ...
 - direct stack assignments (in "instruction style"), e.g. ``3 =: x``
 - labels, e.g. ``name:``
 - jump opcodes

.. note::
  Standalone assembly is supported for backwards compatibility but is not documented
  here anymore.

At the end of the ``assembly { ... }`` block, the stack must be balanced,
unless you require it otherwise. If it is not balanced, the compiler generates
a warning.

Example
-------

The following example provides library code to access the code of another contract and
load it into a ``bytes`` variable. This is not possible with "plain Solidity" and the
idea is that assembly libraries will be used to enhance the Solidity language.

.. code::

    pragma solidity >=0.4.0 <0.6.0;

    library GetCode {
        function at(address _addr) public view returns (bytes memory o_code) {
            assembly {
                // retrieve the size of the code, this needs assembly
                let size := extcodesize(_addr)
                // allocate output byte array - this could also be done without assembly
                // by using o_code = new bytes(size)
                o_code := mload(0x40)
                // new "memory end" including padding
                mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
                // store length in memory
                mstore(o_code, size)
                // actually retrieve the code, this needs assembly
                extcodecopy(_addr, add(o_code, 0x20), 0, size)
            }
        }
    }

Inline assembly is also beneficial in cases where the optimizer fails to produce
efficient code, for example:

.. code::

    pragma solidity >=0.4.16 <0.6.0;

    library VectorSum {
        // This function is less efficient because the optimizer currently fails to
        // remove the bounds checks in array access.
        function sumSolidity(uint[] memory _data) public pure returns (uint o_sum) {
            for (uint i = 0; i < _data.length; ++i)
                o_sum += _data[i];
        }

        // We know that we only access the array in bounds, so we can avoid the check.
        // 0x20 needs to be added to an array because the first slot contains the
        // array length.
        function sumAsm(uint[] memory _data) public pure returns (uint o_sum) {
            for (uint i = 0; i < _data.length; ++i) {
                assembly {
                    o_sum := add(o_sum, mload(add(add(_data, 0x20), mul(i, 0x20))))
                }
            }
        }

        // Same as above, but accomplish the entire code within inline assembly.
        function sumPureAsm(uint[] memory _data) public pure returns (uint o_sum) {
            assembly {
               // Load the length (first 32 bytes)
               let len := mload(_data)

               // Skip over the length field.
               //
               // Keep temporary variable so it can be incremented in place.
               //
               // NOTE: incrementing _data would result in an unusable
               //       _data variable after this assembly block
               let data := add(_data, 0x20)

               // Iterate until the bound is not met.
               for
                   { let end := add(data, mul(len, 0x20)) }
                   lt(data, end)
                   { data := add(data, 0x20) }
               {
                   o_sum := add(o_sum, mload(data))
               }
            }
        }
    }


.. _opcodes:

Opcodes
-------

This document does not want to be a full description of the Ethereum virtual machine, but the
following list can be used as a reference of its opcodes.

If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
Note that the order of arguments can be seen to be reversed in non-functional style (explained below).
Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
special and all others push exactly one item onto the stack.
Opcodes marked with ``F``, ``H``, ``B`` or ``C`` are present since Frontier, Homestead, Byzantium or Constantinople, respectively.
Constantinople is still in planning and all instructions marked as such will result in an invalid instruction exception.

In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to
but not including position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``.

The opcodes ``pushi`` and ``jumpdest`` cannot be used directly.

In the grammar, opcodes are represented as pre-defined identifiers.

+-------------------------+-----+---+-----------------------------------------------------------------+
| Instruction             |     |   | Explanation                                                     |
+=========================+=====+===+=================================================================+
| stop                    + `-` | F | stop execution, identical to return(0,0)                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| add(x, y)               |     | F | x + y                                                           |
+-------------------------+-----+---+-----------------------------------------------------------------+
| sub(x, y)               |     | F | x - y                                                           |
+-------------------------+-----+---+-----------------------------------------------------------------+
| mul(x, y)               |     | F | x * y                                                           |
+-------------------------+-----+---+-----------------------------------------------------------------+
| div(x, y)               |     | F | x / y                                                           |
+-------------------------+-----+---+-----------------------------------------------------------------+
| sdiv(x, y)              |     | F | x / y, for signed numbers in two's complement                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| mod(x, y)               |     | F | x % y                                                           |
+-------------------------+-----+---+-----------------------------------------------------------------+
| smod(x, y)              |     | F | x % y, for signed numbers in two's complement                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| exp(x, y)               |     | F | x to the power of y                                             |
+-------------------------+-----+---+-----------------------------------------------------------------+
| not(x)                  |     | F | ~x, every bit of x is negated                                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| lt(x, y)                |     | F | 1 if x < y, 0 otherwise                                         |
+-------------------------+-----+---+-----------------------------------------------------------------+
| gt(x, y)                |     | F | 1 if x > y, 0 otherwise                                         |
+-------------------------+-----+---+-----------------------------------------------------------------+
| slt(x, y)               |     | F | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
+-------------------------+-----+---+-----------------------------------------------------------------+
| sgt(x, y)               |     | F | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
+-------------------------+-----+---+-----------------------------------------------------------------+
| eq(x, y)                |     | F | 1 if x == y, 0 otherwise                                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| iszero(x)               |     | F | 1 if x == 0, 0 otherwise                                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| and(x, y)               |     | F | bitwise and of x and y                                          |
+-------------------------+-----+---+-----------------------------------------------------------------+
| or(x, y)                |     | F | bitwise or of x and y                                           |
+-------------------------+-----+---+-----------------------------------------------------------------+
| xor(x, y)               |     | F | bitwise xor of x and y                                          |
+-------------------------+-----+---+-----------------------------------------------------------------+
| byte(n, x)              |     | F | nth byte of x, where the most significant byte is the 0th byte  |
+-------------------------+-----+---+-----------------------------------------------------------------+
| shl(x, y)               |     | C | logical shift left y by x bits                                  |
+-------------------------+-----+---+-----------------------------------------------------------------+
| shr(x, y)               |     | C | logical shift right y by x bits                                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| sar(x, y)               |     | C | arithmetic shift right y by x bits                              |
+-------------------------+-----+---+-----------------------------------------------------------------+
| addmod(x, y, m)         |     | F | (x + y) % m with arbitrary precision arithmetic                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| mulmod(x, y, m)         |     | F | (x * y) % m with arbitrary precision arithmetic                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| signextend(i, x)        |     | F | sign extend from (i*8+7)th bit counting from least significant  |
+-------------------------+-----+---+-----------------------------------------------------------------+
| keccak256(p, n)         |     | F | keccak(mem[p...(p+n)))                                          |
+-------------------------+-----+---+-----------------------------------------------------------------+
| jump(label)             | `-` | F | jump to label / code position                                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| jumpi(label, cond)      | `-` | F | jump to label if cond is nonzero                                |
+-------------------------+-----+---+-----------------------------------------------------------------+
| pc                      |     | F | current position in code                                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| pop(x)                  | `-` | F | remove the element pushed by x                                  |
+-------------------------+-----+---+-----------------------------------------------------------------+
| dup1 ... dup16          |     | F | copy nth stack slot to the top (counting from top)              |
+-------------------------+-----+---+-----------------------------------------------------------------+
| swap1 ... swap16        | `*` | F | swap topmost and nth stack slot below it                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| mload(p)                |     | F | mem[p...(p+32))                                                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| mstore(p, v)            | `-` | F | mem[p...(p+32)) := v                                            |
+-------------------------+-----+---+-----------------------------------------------------------------+
| mstore8(p, v)           | `-` | F | mem[p] := v & 0xff (only modifies a single byte)                |
+-------------------------+-----+---+-----------------------------------------------------------------+
| sload(p)                |     | F | storage[p]                                                      |
+-------------------------+-----+---+-----------------------------------------------------------------+
| sstore(p, v)            | `-` | F | storage[p] := v                                                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| msize                   |     | F | size of memory, i.e. largest accessed memory index              |
+-------------------------+-----+---+-----------------------------------------------------------------+
| gas                     |     | F | gas still available to execution                                |
+-------------------------+-----+---+-----------------------------------------------------------------+
| address                 |     | F | address of the current contract / execution context             |
+-------------------------+-----+---+-----------------------------------------------------------------+
| balance(a)              |     | F | wei balance at address a                                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| caller                  |     | F | call sender (excluding ``delegatecall``)                        |
+-------------------------+-----+---+-----------------------------------------------------------------+
| callvalue               |     | F | wei sent together with the current call                         |
+-------------------------+-----+---+-----------------------------------------------------------------+
| calldataload(p)         |     | F | call data starting from position p (32 bytes)                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| calldatasize            |     | F | size of call data in bytes                                      |
+-------------------------+-----+---+-----------------------------------------------------------------+
| calldatacopy(t, f, s)   | `-` | F | copy s bytes from calldata at position f to mem at position t   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| codesize                |     | F | size of the code of the current contract / execution context    |
+-------------------------+-----+---+-----------------------------------------------------------------+
| codecopy(t, f, s)       | `-` | F | copy s bytes from code at position f to mem at position t       |
+-------------------------+-----+---+-----------------------------------------------------------------+
| extcodesize(a)          |     | F | size of the code at address a                                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| extcodecopy(a, t, f, s) | `-` | F | like codecopy(t, f, s) but take code at address a               |
+-------------------------+-----+---+-----------------------------------------------------------------+
| returndatasize          |     | B | size of the last returndata                                     |
+-------------------------+-----+---+-----------------------------------------------------------------+
| returndatacopy(t, f, s) | `-` | B | copy s bytes from returndata at position f to mem at position t |
+-------------------------+-----+---+-----------------------------------------------------------------+
| extcodehash(a)          |     | C | code hash of address a                                          |
+-------------------------+-----+---+-----------------------------------------------------------------+
| create(v, p, n)         |     | F | create new contract with code mem[p...(p+n)) and send v wei     |
|                         |     |   | and return the new address                                      |
+-------------------------+-----+---+-----------------------------------------------------------------+
| create2(v, p, n, s)     |     | C | create new contract with code mem[p...(p+n)) at address         |
|                         |     |   | keccak256(0xff . this . s . keccak256(mem[p...(p+n)))           |
|                         |     |   | and send v wei and return the new address, where ``0xff`` is a  |
|                         |     |   | 8 byte value, ``this`` is the current contract's address        |
|                         |     |   | as a 20 byte value and ``s`` is a big-endian 256-bit value      |
+-------------------------+-----+---+-----------------------------------------------------------------+
| call(g, a, v, in,       |     | F | call contract at address a with input mem[in...(in+insize))     |
| insize, out, outsize)   |     |   | providing g gas and v wei and output area                       |
|                         |     |   | mem[out...(out+outsize)) returning 0 on error (eg. out of gas)  |
|                         |     |   | and 1 on success                                                |
+-------------------------+-----+---+-----------------------------------------------------------------+
| callcode(g, a, v, in,   |     | F | identical to ``call`` but only use the code from a and stay     |
| insize, out, outsize)   |     |   | in the context of the current contract otherwise                |
+-------------------------+-----+---+-----------------------------------------------------------------+
| delegatecall(g, a, in,  |     | H | identical to ``callcode`` but also keep ``caller``              |
| insize, out, outsize)   |     |   | and ``callvalue``                                               |
+-------------------------+-----+---+-----------------------------------------------------------------+
| staticcall(g, a, in,    |     | B | identical to ``call(g, a, 0, in, insize, out, outsize)`` but do |
| insize, out, outsize)   |     |   | not allow state modifications                                   |
+-------------------------+-----+---+-----------------------------------------------------------------+
| return(p, s)            | `-` | F | end execution, return data mem[p...(p+s))                       |
+-------------------------+-----+---+-----------------------------------------------------------------+
| revert(p, s)            | `-` | B | end execution, revert state changes, return data mem[p...(p+s)) |
+-------------------------+-----+---+-----------------------------------------------------------------+
| selfdestruct(a)         | `-` | F | end execution, destroy current contract and send funds to a     |
+-------------------------+-----+---+-----------------------------------------------------------------+
| invalid                 | `-` | F | end execution with invalid instruction                          |
+-------------------------+-----+---+-----------------------------------------------------------------+
| log0(p, s)              | `-` | F | log without topics and data mem[p...(p+s))                      |
+-------------------------+-----+---+-----------------------------------------------------------------+
| log1(p, s, t1)          | `-` | F | log with topic t1 and data mem[p...(p+s))                       |
+-------------------------+-----+---+-----------------------------------------------------------------+
| log2(p, s, t1, t2)      | `-` | F | log with topics t1, t2 and data mem[p...(p+s))                  |
+-------------------------+-----+---+-----------------------------------------------------------------+
| log3(p, s, t1, t2, t3)  | `-` | F | log with topics t1, t2, t3 and data mem[p...(p+s))              |
+-------------------------+-----+---+-----------------------------------------------------------------+
| log4(p, s, t1, t2, t3,  | `-` | F | log with topics t1, t2, t3, t4 and data mem[p...(p+s))          |
| t4)                     |     |   |                                                                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| origin                  |     | F | transaction sender                                              |
+-------------------------+-----+---+-----------------------------------------------------------------+
| gasprice                |     | F | gas price of the transaction                                    |
+-------------------------+-----+---+-----------------------------------------------------------------+
| blockhash(b)            |     | F | hash of block nr b - only for last 256 blocks excluding current |
+-------------------------+-----+---+-----------------------------------------------------------------+
| coinbase                |     | F | current mining beneficiary                                      |
+-------------------------+-----+---+-----------------------------------------------------------------+
| timestamp               |     | F | timestamp of the current block in seconds since the epoch       |
+-------------------------+-----+---+-----------------------------------------------------------------+
| number                  |     | F | current block number                                            |
+-------------------------+-----+---+-----------------------------------------------------------------+
| difficulty              |     | F | difficulty of the current block                                 |
+-------------------------+-----+---+-----------------------------------------------------------------+
| gaslimit                |     | F | block gas limit of the current block                            |
+-------------------------+-----+---+-----------------------------------------------------------------+

Literals
--------

You can use integer constants by typing them in decimal or hexadecimal notation and an
appropriate ``PUSHi`` instruction will automatically be generated. The following creates code
to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
The final value is assigned to a local variable called ``x``.
Strings are stored left-aligned and cannot be longer than 32 bytes.

.. code::

    assembly { let x := and("abc", add(3, 2)) }


Functional Style
-----------------

For a sequence of opcodes, it is often hard to see what the actual
arguments for certain opcodes are. In the following example,
``3`` is added to the contents in memory at position ``0x80``.

.. code::

    3 0x80 mload add 0x80 mstore

Solidity inline assembly has a "functional style" notation where the same code
would be written as follows:

.. code::

    mstore(0x80, add(mload(0x80), 3))

If you read the code from right to left, you end up with exactly the same
sequence of constants and opcodes, but it is much clearer where the
values end up.

If you care about the exact stack layout, just note that the
syntactically first argument for a function or opcode will be put at the
top of the stack.

Access to External Variables, Functions and Libraries
-----------------------------------------------------

You can access Solidity variables and other identifiers by using their name.
For variables stored in the memory data location, this pushes the address, and not the value
onto the stack. Variables stored in the storage data location are different, as they might not
occupy a full storage slot, so their "address" is composed of a slot and a byte-offset
inside that slot. To retrieve the slot pointed to by the variable ``x``, you
use ``x_slot``, and to retrieve the byte-offset you use ``x_offset``.

Local Solidity variables are available for assignments, for example:

.. code::

    pragma solidity >=0.4.11 <0.6.0;

    contract C {
        uint b;
        function f(uint x) public view returns (uint r) {
            assembly {
                r := mul(x, sload(b_slot)) // ignore the offset, we know it is zero
            }
        }
    }

.. warning::
    If you access variables of a type that spans less than 256 bits
    (for example ``uint64``, ``address``, ``bytes16`` or ``byte``),
    you cannot make any assumptions about bits not part of the
    encoding of the type. Especially, do not assume them to be zero.
    To be safe, always clear the data properly before you use it
    in a context where this is important:
    ``uint32 x = f(); assembly { x := and(x, 0xffffffff) /* now use x */ }``
    To clean signed types, you can use the ``signextend`` opcode.

Labels
------

Support for labels has been removed in version 0.5.0 of Solidity.
Please use functions, loops, if or switch statements instead.

Declaring Assembly-Local Variables
----------------------------------

You can use the ``let`` keyword to declare variables that are only visible in
inline assembly and actually only in the current ``{...}``-block. What happens
is that the ``let`` instruction will create a new stack slot that is reserved
for the variable and automatically removed again when the end of the block
is reached. You need to provide an initial value for the variable which can
be just ``0``, but it can also be a complex functional-style expression.

.. code::

    pragma solidity >=0.4.16 <0.6.0;

    contract C {
        function f(uint x) public view returns (uint b) {
            assembly {
                let v := add(x, 1)
                mstore(0x80, v)
                {
                    let y := add(sload(v), 1)
                    b := y
                } // y is "deallocated" here
                b := add(b, v)
            } // v is "deallocated" here
        }
    }


Assignments
-----------

Assignments are possible to assembly-local variables and to function-local
variables. Take care that when you assign to variables that point to
memory or storage, you will only change the pointer and not the data.

Variables can only be assigned expressions that result in exactly one value.
If you want to assign the values returned from a function that has
multiple return parameters, you have to provide multiple variables.

.. code::

    {
        let v := 0
        let g := add(v, 2)
        function f() -> a, b { }
        let c, d := f()
    }

If
--

The if statement can be used for conditionally executing code.
There is no "else" part, consider using "switch" (see below) if
you need multiple alternatives.

.. code::

    {
        if eq(value, 0) { revert(0, 0) }
    }

The curly braces for the body are required.

Switch
------

You can use a switch statement as a very basic version of "if/else".
It takes the value of an expression and compares it to several constants.
The branch corresponding to the matching constant is taken. Contrary to the
error-prone behaviour of some programming languages, control flow does
not continue from one case to the next. There can be a fallback or default
case called ``default``.

.. code::

    {
        let x := 0
        switch calldataload(4)
        case 0 {
            x := calldataload(0x24)
        }
        default {
            x := calldataload(0x44)
        }
        sstore(0, div(x, 2))
    }

The list of cases does not require curly braces, but the body of a
case does require them.

Loops
-----

Assembly supports a simple for-style loop. For-style loops have
a header containing an initializing part, a condition and a post-iteration
part. The condition has to be a functional-style expression, while
the other two are blocks. If the initializing part
declares any variables, the scope of these variables is extended into the
body (including the condition and the post-iteration part).

The following example computes the sum of an area in memory.

.. code::

    {
        let x := 0
        for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } {
            x := add(x, mload(i))
        }
    }

For loops can also be written so that they behave like while loops:
Simply leave the initialization and post-iteration parts empty.

.. code::

    {
        let x := 0
        let i := 0
        for { } lt(i, 0x100) { } {     // while(i < 0x100)
            x := add(x, mload(i))
            i := add(i, 0x20)
        }
    }

Functions
---------

Assembly allows the definition of low-level functions. These take their
arguments (and a return PC) from the stack and also put the results onto the
stack. Calling a function looks the same way as executing a functional-style
opcode.

Functions can be defined anywhere and are visible in the block they are
declared in. Inside a function, you cannot access local variables
defined outside of that function. There is no explicit ``return``
statement.

If you call a function that returns multiple values, you have to assign
them to a tuple using ``a, b := f(x)`` or ``let a, b := f(x)``.

The following example implements the power function by square-and-multiply.

.. code::

    {
        function power(base, exponent) -> result {
            switch exponent
            case 0 { result := 1 }
            case 1 { result := base }
            default {
                result := power(mul(base, base), div(exponent, 2))
                switch mod(exponent, 2)
                    case 1 { result := mul(base, result) }
            }
        }
    }

Things to Avoid
---------------

Inline assembly might have a quite high-level look, but it actually is extremely
low-level. Function calls, loops, ifs and switches are converted by simple
rewriting rules and after that, the only thing the assembler does for you is re-arranging
functional-style opcodes, counting stack height for
variable access and removing stack slots for assembly-local variables when the end
of their block is reached.

Conventions in Solidity
-----------------------

In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
treat them as 256-bit numbers and the higher-order bits are only cleaned at the
point where it is necessary, i.e. just shortly before they are written to memory
or before comparisons are performed. This means that if you access such a variable
from within inline assembly, you might have to manually clean the higher order bits
first.

Solidity manages memory in a very simple way: There is a "free memory pointer"
at position ``0x40`` in memory. If you want to allocate memory, just use the memory
starting from where this pointer points at and update it accordingly.
There is no guarantee that the memory has not been used before and thus
you cannot assume that its contents are zero bytes.
There is no built-in mechanism to release or free allocated memory.
Here is an assembly snippet that can be used for allocating memory::

    function allocate(length) -> pos {
      pos := mload(0x40)
      mstore(0x40, add(pos, length))
    }

The first 64 bytes of memory can be used as "scratch space" for short-term
allocation. The 32 bytes after the free memory pointer (i.e. starting at ``0x60``)
is meant to be zero permanently and is used as the initial value for
empty dynamic memory arrays.
This means that the allocatable memory starts at ``0x80``, which is the initial value
of the free memory pointer.

Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory
arrays are pointers to memory arrays. The length of a dynamic array is stored at the
first slot of the array and followed by the array elements.

.. warning::
    Statically-sized memory arrays do not have a length field, but it might be added later
    to allow better convertibility between statically- and dynamically-sized arrays, so
    please do not rely on that.


Standalone Assembly
===================

The assembly language described as inline assembly above can also be used
standalone and in fact, the plan is to use it as an intermediate language
for the Solidity compiler. In this form, it tries to achieve several goals:

1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
2. The translation from assembly to bytecode should contain as few "surprises" as possible.
3. Control flow should be easy to detect to help in formal verification and optimization.

In order to achieve the first and last goal, assembly provides high-level constructs
like ``for`` loops, ``if`` and ``switch`` statements and function calls. It should be possible
to write assembly programs that do not make use of explicit ``SWAP``, ``DUP``,
``JUMP`` and ``JUMPI`` statements, because the first two obfuscate the data flow
and the last two obfuscate control flow. Furthermore, functional statements of
the form ``mul(add(x, y), 7)`` are preferred over pure opcode statements like
``7 y x add mul`` because in the first form, it is much easier to see which
operand is used for which opcode.

The second goal is achieved by compiling the
higher level constructs to bytecode in a very regular way.
The only non-local operation performed
by the assembler is name lookup of user-defined identifiers (functions, variables, ...),
which follow very simple and regular scoping rules and cleanup of local variables from the stack.

Scoping: An identifier that is declared (label, variable, function, assembly)
is only visible in the block where it was declared (including nested blocks
inside the current block). It is not legal to access local variables across
function borders, even if they would be in scope. Shadowing is not allowed.
Local variables cannot be accessed before they were declared, but
functions and assemblies can. Assemblies are special blocks that are used
for e.g. returning runtime code or creating contracts. No identifier from an
outer assembly is visible in a sub-assembly.

If control flow passes over the end of a block, pop instructions are inserted
that match the number of local variables declared in that block.
Whenever a local variable is referenced, the code generator needs
to know its current relative position in the stack and thus it needs to
keep track of the current so-called stack height. Since all local variables
are removed at the end of a block, the stack height before and after the block
should be the same. If this is not the case, compilation fails.

Using ``switch``, ``for`` and functions, it should be possible to write
complex code without using ``jump`` or ``jumpi`` manually. This makes it much
easier to analyze the control flow, which allows for improved formal
verification and optimization.

Furthermore, if manual jumps are allowed, computing the stack height is rather complicated.
The position of all local variables on the stack needs to be known, otherwise
neither references to local variables nor removing local variables automatically
from the stack at the end of a block will work properly.

Example:

We will follow an example compilation from Solidity to assembly.
We consider the runtime bytecode of the following Solidity program::

    pragma solidity >=0.4.16 <0.6.0;

    contract C {
      function f(uint x) public pure returns (uint y) {
        y = 1;
        for (uint i = 0; i < x; i++)
          y = 2 * y;
      }
    }

The following assembly will be generated::

    {
      mstore(0x40, 0x80) // store the "free memory pointer"
      // function dispatcher
      switch div(calldataload(0), exp(2, 226))
      case 0xb3de648b {
        let r := f(calldataload(4))
        let ret := $allocate(0x20)
        mstore(ret, r)
        return(ret, 0x20)
      }
      default { revert(0, 0) }
      // memory allocator
      function $allocate(size) -> pos {
        pos := mload(0x40)
        mstore(0x40, add(pos, size))
      }
      // the contract function
      function f(x) -> y {
        y := 1
        for { let i := 0 } lt(i, x) { i := add(i, 1) } {
          y := mul(2, y)
        }
      }
    }


Assembly Grammar
----------------

The tasks of the parser are the following:

- Turn the byte stream into a token stream, discarding C++-style comments
  (a special comment exists for source references, but we will not explain it here).
- Turn the token stream into an AST according to the grammar below
- Register identifiers with the block they are defined in (annotation to the
  AST node) and note from which point on, variables can be accessed.

The assembly lexer follows the one defined by Solidity itself.

Whitespace is used to delimit tokens and it consists of the characters
Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and
are interpreted in the same way as Whitespace.

Grammar::

    AssemblyBlock = '{' AssemblyItem* '}'
    AssemblyItem =
        Identifier |
        AssemblyBlock |
        AssemblyExpression |
        AssemblyLocalDefinition |
        AssemblyAssignment |
        AssemblyStackAssignment |
        LabelDefinition |
        AssemblyIf |
        AssemblySwitch |
        AssemblyFunctionDefinition |
        AssemblyFor |
        'break' |
        'continue' |
        SubAssembly
    AssemblyExpression = AssemblyCall | Identifier | AssemblyLiteral
    AssemblyLiteral = NumberLiteral | StringLiteral | HexLiteral
    Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
    AssemblyCall = Identifier '(' ( AssemblyExpression ( ',' AssemblyExpression )* )? ')'
    AssemblyLocalDefinition = 'let' IdentifierOrList ( ':=' AssemblyExpression )?
    AssemblyAssignment = IdentifierOrList ':=' AssemblyExpression
    IdentifierOrList = Identifier | '(' IdentifierList ')'
    IdentifierList = Identifier ( ',' Identifier)*
    AssemblyStackAssignment = '=:' Identifier
    LabelDefinition = Identifier ':'
    AssemblyIf = 'if' AssemblyExpression AssemblyBlock
    AssemblySwitch = 'switch' AssemblyExpression AssemblyCase*
        ( 'default' AssemblyBlock )?
    AssemblyCase = 'case' AssemblyExpression AssemblyBlock
    AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')'
        ( '->' '(' IdentifierList ')' )? AssemblyBlock
    AssemblyFor = 'for' ( AssemblyBlock | AssemblyExpression )
        AssemblyExpression ( AssemblyBlock | AssemblyExpression ) AssemblyBlock
    SubAssembly = 'assembly' Identifier AssemblyBlock
    NumberLiteral = HexNumber | DecimalNumber
    HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
    StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
    HexNumber = '0x' [0-9a-fA-F]+
    DecimalNumber = [0-9]+