aboutsummaryrefslogtreecommitdiffstats
path: root/libsolidity/codegen/ExpressionCompiler.cpp
blob: 2e548e32341038e91b825241ec70e144ac8d1c5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
/*
    This file is part of solidity.

    solidity is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    solidity is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with solidity.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Solidity AST to EVM bytecode compiler for expressions.
 */

#include <utility>
#include <numeric>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <libdevcore/Common.h>
#include <libdevcore/SHA3.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/codegen/ExpressionCompiler.h>
#include <libsolidity/codegen/CompilerContext.h>
#include <libsolidity/codegen/CompilerUtils.h>
#include <libsolidity/codegen/LValue.h>
#include <libevmasm/GasMeter.h>

#include <libdevcore/Whiskers.h>

using namespace std;

namespace dev
{
namespace solidity
{

void ExpressionCompiler::compile(Expression const& _expression)
{
    _expression.accept(*this);
}

void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl)
{
    if (!_varDecl.value())
        return;
    TypePointer type = _varDecl.value()->annotation().type;
    solAssert(!!type, "Type information not available.");
    CompilerContext::LocationSetter locationSetter(m_context, _varDecl);
    _varDecl.value()->accept(*this);

    if (_varDecl.annotation().type->dataStoredIn(DataLocation::Storage))
    {
        // reference type, only convert value to mobile type and do final conversion in storeValue.
        auto mt = type->mobileType();
        solAssert(mt, "");
        utils().convertType(*type, *mt);
        type = mt;
    }
    else
    {
        utils().convertType(*type, *_varDecl.annotation().type);
        type = _varDecl.annotation().type;
    }
    StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true);
}

void ExpressionCompiler::appendConstStateVariableAccessor(VariableDeclaration const& _varDecl)
{
    solAssert(_varDecl.isConstant(), "");
    _varDecl.value()->accept(*this);
    utils().convertType(*_varDecl.value()->annotation().type, *_varDecl.annotation().type);

    // append return
    m_context << dupInstruction(_varDecl.annotation().type->sizeOnStack() + 1);
    m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction);
}

void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl)
{
    solAssert(!_varDecl.isConstant(), "");
    CompilerContext::LocationSetter locationSetter(m_context, _varDecl);
    FunctionType accessorType(_varDecl);

    TypePointers paramTypes = accessorType.parameterTypes();
    m_context.adjustStackOffset(1 + CompilerUtils::sizeOnStack(paramTypes));

    // retrieve the position of the variable
    auto const& location = m_context.storageLocationOfVariable(_varDecl);
    m_context << location.first << u256(location.second);

    TypePointer returnType = _varDecl.annotation().type;

    for (size_t i = 0; i < paramTypes.size(); ++i)
    {
        if (auto mappingType = dynamic_cast<MappingType const*>(returnType.get()))
        {
            solAssert(CompilerUtils::freeMemoryPointer >= 0x40, "");
            solUnimplementedAssert(
                !paramTypes[i]->isDynamicallySized(),
                "Accessors for mapping with dynamically-sized keys not yet implemented."
            );
            // pop offset
            m_context << Instruction::POP;
            // move storage offset to memory.
            utils().storeInMemory(32);
            // move key to memory.
            utils().copyToStackTop(paramTypes.size() - i, 1);
            utils().storeInMemory(0);
            m_context << u256(64) << u256(0) << Instruction::KECCAK256;
            // push offset
            m_context << u256(0);
            returnType = mappingType->valueType();
        }
        else if (auto arrayType = dynamic_cast<ArrayType const*>(returnType.get()))
        {
            // pop offset
            m_context << Instruction::POP;
            utils().copyToStackTop(paramTypes.size() - i + 1, 1);
            ArrayUtils(m_context).accessIndex(*arrayType);
            returnType = arrayType->baseType();
        }
        else
            solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types.");
    }
    // remove index arguments.
    if (paramTypes.size() == 1)
        m_context << Instruction::SWAP2 << Instruction::POP << Instruction::SWAP1;
    else if (paramTypes.size() >= 2)
    {
        m_context << swapInstruction(paramTypes.size());
        m_context << Instruction::POP;
        m_context << swapInstruction(paramTypes.size());
        utils().popStackSlots(paramTypes.size() - 1);
    }
    unsigned retSizeOnStack = 0;
    auto returnTypes = accessorType.returnParameterTypes();
    solAssert(returnTypes.size() >= 1, "");
    if (StructType const* structType = dynamic_cast<StructType const*>(returnType.get()))
    {
        // remove offset
        m_context << Instruction::POP;
        auto const& names = accessorType.returnParameterNames();
        // struct
        for (size_t i = 0; i < names.size(); ++i)
        {
            if (returnTypes[i]->category() == Type::Category::Mapping)
                continue;
            if (auto arrayType = dynamic_cast<ArrayType const*>(returnTypes[i].get()))
                if (!arrayType->isByteArray())
                    continue;
            pair<u256, unsigned> const& offsets = structType->storageOffsetsOfMember(names[i]);
            m_context << Instruction::DUP1 << u256(offsets.first) << Instruction::ADD << u256(offsets.second);
            TypePointer memberType = structType->memberType(names[i]);
            StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true);
            utils().convertType(*memberType, *returnTypes[i]);
            utils().moveToStackTop(returnTypes[i]->sizeOnStack());
            retSizeOnStack += returnTypes[i]->sizeOnStack();
        }
        // remove slot
        m_context << Instruction::POP;
    }
    else
    {
        // simple value or array
        solAssert(returnTypes.size() == 1, "");
        StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true);
        utils().convertType(*returnType, *returnTypes.front());
        retSizeOnStack = returnTypes.front()->sizeOnStack();
    }
    solAssert(retSizeOnStack == utils().sizeOnStack(returnTypes), "");
    if (retSizeOnStack > 15)
        BOOST_THROW_EXCEPTION(
            CompilerError() <<
            errinfo_sourceLocation(_varDecl.location()) <<
            errinfo_comment("Stack too deep.")
        );
    m_context << dupInstruction(retSizeOnStack + 1);
    m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction);
}

bool ExpressionCompiler::visit(Conditional const& _condition)
{
    CompilerContext::LocationSetter locationSetter(m_context, _condition);
    _condition.condition().accept(*this);
    eth::AssemblyItem trueTag = m_context.appendConditionalJump();
    _condition.falseExpression().accept(*this);
    utils().convertType(*_condition.falseExpression().annotation().type, *_condition.annotation().type);
    eth::AssemblyItem endTag = m_context.appendJumpToNew();
    m_context << trueTag;
    int offset = _condition.annotation().type->sizeOnStack();
    m_context.adjustStackOffset(-offset);
    _condition.trueExpression().accept(*this);
    utils().convertType(*_condition.trueExpression().annotation().type, *_condition.annotation().type);
    m_context << endTag;
    return false;
}

bool ExpressionCompiler::visit(Assignment const& _assignment)
{
    CompilerContext::LocationSetter locationSetter(m_context, _assignment);
    Token::Value op = _assignment.assignmentOperator();
    Token::Value binOp = op == Token::Assign ? op : Token::AssignmentToBinaryOp(op);
    Type const& leftType = *_assignment.leftHandSide().annotation().type;
    if (leftType.category() == Type::Category::Tuple)
    {
        solAssert(*_assignment.annotation().type == TupleType(), "");
        solAssert(op == Token::Assign, "");
    }
    else
        solAssert(*_assignment.annotation().type == leftType, "");
    bool cleanupNeeded = false;
    if (op != Token::Assign)
        cleanupNeeded = cleanupNeededForOp(leftType.category(), binOp);
    _assignment.rightHandSide().accept(*this);
    // Perform some conversion already. This will convert storage types to memory and literals
    // to their actual type, but will not convert e.g. memory to storage.
    TypePointer rightIntermediateType;
    if (op != Token::Assign && Token::isShiftOp(binOp))
        rightIntermediateType = _assignment.rightHandSide().annotation().type->mobileType();
    else
        rightIntermediateType = _assignment.rightHandSide().annotation().type->closestTemporaryType(
            _assignment.leftHandSide().annotation().type
        );
    solAssert(rightIntermediateType, "");
    utils().convertType(*_assignment.rightHandSide().annotation().type, *rightIntermediateType, cleanupNeeded);

    _assignment.leftHandSide().accept(*this);
    solAssert(!!m_currentLValue, "LValue not retrieved.");

    if (op == Token::Assign)
        m_currentLValue->storeValue(*rightIntermediateType, _assignment.location());
    else  // compound assignment
    {
        solAssert(leftType.isValueType(), "Compound operators only available for value types.");
        unsigned lvalueSize = m_currentLValue->sizeOnStack();
        unsigned itemSize = _assignment.annotation().type->sizeOnStack();
        if (lvalueSize > 0)
        {
            utils().copyToStackTop(lvalueSize + itemSize, itemSize);
            utils().copyToStackTop(itemSize + lvalueSize, lvalueSize);
            // value lvalue_ref value lvalue_ref
        }
        m_currentLValue->retrieveValue(_assignment.location(), true);
        utils().convertType(leftType, leftType, cleanupNeeded);

        if (Token::isShiftOp(binOp))
            appendShiftOperatorCode(binOp, leftType, *rightIntermediateType);
        else
        {
            solAssert(leftType == *rightIntermediateType, "");
            appendOrdinaryBinaryOperatorCode(binOp, leftType);
        }
        if (lvalueSize > 0)
        {
            if (itemSize + lvalueSize > 16)
                BOOST_THROW_EXCEPTION(
                    CompilerError() <<
                    errinfo_sourceLocation(_assignment.location()) <<
                    errinfo_comment("Stack too deep, try removing local variables.")
                );
            // value [lvalue_ref] updated_value
            for (unsigned i = 0; i < itemSize; ++i)
                m_context << swapInstruction(itemSize + lvalueSize) << Instruction::POP;
        }
        m_currentLValue->storeValue(*_assignment.annotation().type, _assignment.location());
    }
    m_currentLValue.reset();
    return false;
}

bool ExpressionCompiler::visit(TupleExpression const& _tuple)
{
    if (_tuple.isInlineArray())
    {
        ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_tuple.annotation().type);
        
        solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array.");
        m_context << max(u256(32u), arrayType.memorySize());
        utils().allocateMemory();
        m_context << Instruction::DUP1;
    
        for (auto const& component: _tuple.components())
        {
            component->accept(*this);
            utils().convertType(*component->annotation().type, *arrayType.baseType(), true);
            utils().storeInMemoryDynamic(*arrayType.baseType(), true);              
        }
        
        m_context << Instruction::POP;
    }
    else
    {
        vector<unique_ptr<LValue>> lvalues;
        for (auto const& component: _tuple.components())
            if (component)
            {
                component->accept(*this);
                if (_tuple.annotation().lValueRequested)
                {
                    solAssert(!!m_currentLValue, "");
                    lvalues.push_back(move(m_currentLValue));
                }
            }
            else if (_tuple.annotation().lValueRequested)
                lvalues.push_back(unique_ptr<LValue>());
        if (_tuple.annotation().lValueRequested)
        {
            if (_tuple.components().size() == 1)
                m_currentLValue = move(lvalues[0]);
            else
                m_currentLValue.reset(new TupleObject(m_context, move(lvalues)));
        }
    }
    return false;
}

bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation)
{
    CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation);
    if (_unaryOperation.annotation().type->category() == Type::Category::RationalNumber)
    {
        m_context << _unaryOperation.annotation().type->literalValue(nullptr);
        return false;
    }

    _unaryOperation.subExpression().accept(*this);

    switch (_unaryOperation.getOperator())
    {
    case Token::Not: // !
        m_context << Instruction::ISZERO;
        break;
    case Token::BitNot: // ~
        m_context << Instruction::NOT;
        break;
    case Token::Delete: // delete
        solAssert(!!m_currentLValue, "LValue not retrieved.");
        m_currentLValue->setToZero(_unaryOperation.location());
        m_currentLValue.reset();
        break;
    case Token::Inc: // ++ (pre- or postfix)
    case Token::Dec: // -- (pre- or postfix)
        solAssert(!!m_currentLValue, "LValue not retrieved.");
        m_currentLValue->retrieveValue(_unaryOperation.location());
        if (!_unaryOperation.isPrefixOperation())
        {
            // store value for later
            solUnimplementedAssert(_unaryOperation.annotation().type->sizeOnStack() == 1, "Stack size != 1 not implemented.");
            m_context << Instruction::DUP1;
            if (m_currentLValue->sizeOnStack() > 0)
                for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i)
                    m_context << swapInstruction(i);
        }
        m_context << u256(1);
        if (_unaryOperation.getOperator() == Token::Inc)
            m_context << Instruction::ADD;
        else
            m_context << Instruction::SWAP1 << Instruction::SUB;
        // Stack for prefix: [ref...] (*ref)+-1
        // Stack for postfix: *ref [ref...] (*ref)+-1
        for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i)
            m_context << swapInstruction(i);
        m_currentLValue->storeValue(
            *_unaryOperation.annotation().type, _unaryOperation.location(),
            !_unaryOperation.isPrefixOperation());
        m_currentLValue.reset();
        break;
    case Token::Add: // +
        // unary add, so basically no-op
        break;
    case Token::Sub: // -
        m_context << u256(0) << Instruction::SUB;
        break;
    default:
        solAssert(false, "Invalid unary operator: " + string(Token::toString(_unaryOperation.getOperator())));
    }
    return false;
}

bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation)
{
    CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation);
    Expression const& leftExpression = _binaryOperation.leftExpression();
    Expression const& rightExpression = _binaryOperation.rightExpression();
    solAssert(!!_binaryOperation.annotation().commonType, "");
    TypePointer const& commonType = _binaryOperation.annotation().commonType;
    Token::Value const c_op = _binaryOperation.getOperator();

    if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting
        appendAndOrOperatorCode(_binaryOperation);
    else if (commonType->category() == Type::Category::RationalNumber)
        m_context << commonType->literalValue(nullptr);
    else
    {
        bool cleanupNeeded = cleanupNeededForOp(commonType->category(), c_op);

        TypePointer leftTargetType = commonType;
        TypePointer rightTargetType = Token::isShiftOp(c_op) ? rightExpression.annotation().type->mobileType() : commonType;
        solAssert(rightTargetType, "");

        // for commutative operators, push the literal as late as possible to allow improved optimization
        auto isLiteral = [](Expression const& _e)
        {
            return dynamic_cast<Literal const*>(&_e) || _e.annotation().type->category() == Type::Category::RationalNumber;
        };
        bool swap = m_optimize && Token::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression);
        if (swap)
        {
            leftExpression.accept(*this);
            utils().convertType(*leftExpression.annotation().type, *leftTargetType, cleanupNeeded);
            rightExpression.accept(*this);
            utils().convertType(*rightExpression.annotation().type, *rightTargetType, cleanupNeeded);
        }
        else
        {
            rightExpression.accept(*this);
            utils().convertType(*rightExpression.annotation().type, *rightTargetType, cleanupNeeded);
            leftExpression.accept(*this);
            utils().convertType(*leftExpression.annotation().type, *leftTargetType, cleanupNeeded);
        }
        if (Token::isShiftOp(c_op))
            // shift only cares about the signedness of both sides
            appendShiftOperatorCode(c_op, *leftTargetType, *rightTargetType);
        else if (Token::isCompareOp(c_op))
            appendCompareOperatorCode(c_op, *commonType);
        else
            appendOrdinaryBinaryOperatorCode(c_op, *commonType);
    }

    // do not visit the child nodes, we already did that explicitly
    return false;
}

bool ExpressionCompiler::visit(FunctionCall const& _functionCall)
{
    CompilerContext::LocationSetter locationSetter(m_context, _functionCall);
    if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
    {
        solAssert(_functionCall.arguments().size() == 1, "");
        solAssert(_functionCall.names().empty(), "");
        Expression const& firstArgument = *_functionCall.arguments().front();
        firstArgument.accept(*this);
        utils().convertType(*firstArgument.annotation().type, *_functionCall.annotation().type);
        return false;
    }

    FunctionTypePointer functionType;
    if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
    {
        auto const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type);
        auto const& structType = dynamic_cast<StructType const&>(*type.actualType());
        functionType = structType.constructorType();
    }
    else
        functionType = dynamic_pointer_cast<FunctionType const>(_functionCall.expression().annotation().type);

    TypePointers parameterTypes = functionType->parameterTypes();
    vector<ASTPointer<Expression const>> const& callArguments = _functionCall.arguments();
    vector<ASTPointer<ASTString>> const& callArgumentNames = _functionCall.names();
    if (!functionType->takesArbitraryParameters())
        solAssert(callArguments.size() == parameterTypes.size(), "");

    vector<ASTPointer<Expression const>> arguments;
    if (callArgumentNames.empty())
        // normal arguments
        arguments = callArguments;
    else
        // named arguments
        for (auto const& parameterName: functionType->parameterNames())
        {
            bool found = false;
            for (size_t j = 0; j < callArgumentNames.size() && !found; j++)
                if ((found = (parameterName == *callArgumentNames[j])))
                    // we found the actual parameter position
                    arguments.push_back(callArguments[j]);
            solAssert(found, "");
        }

    if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
    {
        TypeType const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type);
        auto const& structType = dynamic_cast<StructType const&>(*type.actualType());

        m_context << max(u256(32u), structType.memorySize());
        utils().allocateMemory();
        m_context << Instruction::DUP1;

        for (unsigned i = 0; i < arguments.size(); ++i)
        {
            arguments[i]->accept(*this);
            utils().convertType(*arguments[i]->annotation().type, *functionType->parameterTypes()[i]);
            utils().storeInMemoryDynamic(*functionType->parameterTypes()[i]);
        }
        m_context << Instruction::POP;
    }
    else
    {
        FunctionType const& function = *functionType;
        if (function.bound())
            // Only delegatecall and internal functions can be bound, this might be lifted later.
            solAssert(function.kind() == FunctionType::Kind::DelegateCall || function.kind() == FunctionType::Kind::Internal, "");
        switch (function.kind())
        {
        case FunctionType::Kind::Internal:
        {
            // Calling convention: Caller pushes return address and arguments
            // Callee removes them and pushes return values

            eth::AssemblyItem returnLabel = m_context.pushNewTag();
            for (unsigned i = 0; i < arguments.size(); ++i)
            {
                arguments[i]->accept(*this);
                utils().convertType(*arguments[i]->annotation().type, *function.parameterTypes()[i]);
            }

            {
                bool shortcutTaken = false;
                if (auto identifier = dynamic_cast<Identifier const*>(&_functionCall.expression()))
                    if (auto functionDef = dynamic_cast<FunctionDefinition const*>(identifier->annotation().referencedDeclaration))
                    {
                        // Do not directly visit the identifier, because this way, we can avoid
                        // the runtime entry label to be created at the creation time context.
                        CompilerContext::LocationSetter locationSetter2(m_context, *identifier);
                        utils().pushCombinedFunctionEntryLabel(m_context.resolveVirtualFunction(*functionDef), false);
                        shortcutTaken = true;
                    }

                if (!shortcutTaken)
                    _functionCall.expression().accept(*this);
            }

            unsigned parameterSize = CompilerUtils::sizeOnStack(function.parameterTypes());
            if (function.bound())
            {
                // stack: arg2, ..., argn, label, arg1
                unsigned depth = parameterSize + 1;
                utils().moveIntoStack(depth, function.selfType()->sizeOnStack());
                parameterSize += function.selfType()->sizeOnStack();
            }

            if (m_context.runtimeContext())
                // We have a runtime context, so we need the creation part.
                utils().rightShiftNumberOnStack(32);
            else
                // Extract the runtime part.
                m_context << ((u256(1) << 32) - 1) << Instruction::AND;

            m_context.appendJump(eth::AssemblyItem::JumpType::IntoFunction);
            m_context << returnLabel;

            unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes());
            // callee adds return parameters, but removes arguments and return label
            m_context.adjustStackOffset(returnParametersSize - parameterSize - 1);
            break;
        }
        case FunctionType::Kind::External:
        case FunctionType::Kind::CallCode:
        case FunctionType::Kind::DelegateCall:
        case FunctionType::Kind::BareCall:
        case FunctionType::Kind::BareCallCode:
        case FunctionType::Kind::BareDelegateCall:
            _functionCall.expression().accept(*this);
            appendExternalFunctionCall(function, arguments);
            break;
        case FunctionType::Kind::Creation:
        {
            _functionCall.expression().accept(*this);
            solAssert(!function.gasSet(), "Gas limit set for contract creation.");
            solAssert(function.returnParameterTypes().size() == 1, "");
            TypePointers argumentTypes;
            for (auto const& arg: arguments)
            {
                arg->accept(*this);
                argumentTypes.push_back(arg->annotation().type);
            }
            ContractDefinition const* contract =
                &dynamic_cast<ContractType const&>(*function.returnParameterTypes().front()).contractDefinition();
            m_context.callLowLevelFunction(
                "$copyContractCreationCodeToMemory_" + contract->type()->identifier(),
                0,
                1,
                [contract](CompilerContext& _context)
                {
                    // copy the contract's code into memory
                    eth::Assembly const& assembly = _context.compiledContract(*contract);
                    CompilerUtils(_context).fetchFreeMemoryPointer();
                    // pushes size
                    auto subroutine = _context.addSubroutine(make_shared<eth::Assembly>(assembly));
                    _context << Instruction::DUP1 << subroutine;
                    _context << Instruction::DUP4 << Instruction::CODECOPY;
                    _context << Instruction::ADD;
                }
            );
            utils().abiEncode(argumentTypes, function.parameterTypes());
            // now on stack: memory_end_ptr
            // need: size, offset, endowment
            utils().toSizeAfterFreeMemoryPointer();
            if (function.valueSet())
                m_context << dupInstruction(3);
            else
                m_context << u256(0);
            m_context << Instruction::CREATE;
            // Check if zero (out of stack or not enough balance).
            m_context << Instruction::DUP1 << Instruction::ISZERO;
            // TODO: Can we bubble up here? There might be different reasons for failure, I think.
            m_context.appendConditionalRevert(true);
            if (function.valueSet())
                m_context << swapInstruction(1) << Instruction::POP;
            break;
        }
        case FunctionType::Kind::SetGas:
        {
            // stack layout: contract_address function_id [gas] [value]
            _functionCall.expression().accept(*this);

            arguments.front()->accept(*this);
            utils().convertType(*arguments.front()->annotation().type, IntegerType(256), true);
            // Note that function is not the original function, but the ".gas" function.
            // Its values of gasSet and valueSet is equal to the original function's though.
            unsigned stackDepth = (function.gasSet() ? 1 : 0) + (function.valueSet() ? 1 : 0);
            if (stackDepth > 0)
                m_context << swapInstruction(stackDepth);
            if (function.gasSet())
                m_context << Instruction::POP;
            break;
        }
        case FunctionType::Kind::SetValue:
            // stack layout: contract_address function_id [gas] [value]
            _functionCall.expression().accept(*this);
            // Note that function is not the original function, but the ".value" function.
            // Its values of gasSet and valueSet is equal to the original function's though.
            if (function.valueSet())
                m_context << Instruction::POP;
            arguments.front()->accept(*this);
            break;
        case FunctionType::Kind::Send:
        case FunctionType::Kind::Transfer:
            _functionCall.expression().accept(*this);
            // Provide the gas stipend manually at first because we may send zero ether.
            // Will be zeroed if we send more than zero ether.
            m_context << u256(eth::GasCosts::callStipend);
            arguments.front()->accept(*this);
            utils().convertType(
                *arguments.front()->annotation().type,
                *function.parameterTypes().front(), true
            );
            // gas <- gas * !value
            m_context << Instruction::SWAP1 << Instruction::DUP2;
            m_context << Instruction::ISZERO << Instruction::MUL << Instruction::SWAP1;
            appendExternalFunctionCall(
                FunctionType(
                    TypePointers{},
                    TypePointers{},
                    strings(),
                    strings(),
                    FunctionType::Kind::BareCall,
                    false,
                    StateMutability::NonPayable,
                    nullptr,
                    true,
                    true
                ),
                {}
            );
            if (function.kind() == FunctionType::Kind::Transfer)
            {
                // Check if zero (out of stack or not enough balance).
                // TODO: bubble up here, but might also be different error.
                m_context << Instruction::ISZERO;
                m_context.appendConditionalRevert(true);
            }
            break;
        case FunctionType::Kind::Selfdestruct:
            arguments.front()->accept(*this);
            utils().convertType(*arguments.front()->annotation().type, *function.parameterTypes().front(), true);
            m_context << Instruction::SELFDESTRUCT;
            break;
        case FunctionType::Kind::Revert:
        {
            if (!arguments.empty())
            {
                // function-sel(Error(string)) + encoding
                solAssert(arguments.size() == 1, "");
                solAssert(function.parameterTypes().size() == 1, "");
                arguments.front()->accept(*this);
                utils().revertWithStringData(*arguments.front()->annotation().type);
            }
            else
                m_context.appendRevert();
            break;
        }
        case FunctionType::Kind::SHA3:
        {
            solAssert(arguments.size() == 1, "");
            solAssert(!function.padArguments(), "");
            TypePointer const& argType = arguments.front()->annotation().type;
            solAssert(argType, "");
            arguments.front()->accept(*this);
            // Optimization: If type is bytes or string, then do not encode,
            // but directly compute keccak256 on memory.
            if (*argType == ArrayType(DataLocation::Memory) || *argType == ArrayType(DataLocation::Memory, true))
            {
                ArrayUtils(m_context).retrieveLength(ArrayType(DataLocation::Memory));
                m_context << Instruction::SWAP1 << u256(0x20) << Instruction::ADD;
            }
            else
            {
                utils().fetchFreeMemoryPointer();
                utils().packedEncode({argType}, TypePointers());
                utils().toSizeAfterFreeMemoryPointer();
            }
            m_context << Instruction::KECCAK256;
            break;
        }
        case FunctionType::Kind::Log0:
        case FunctionType::Kind::Log1:
        case FunctionType::Kind::Log2:
        case FunctionType::Kind::Log3:
        case FunctionType::Kind::Log4:
        {
            unsigned logNumber = int(function.kind()) - int(FunctionType::Kind::Log0);
            for (unsigned arg = logNumber; arg > 0; --arg)
            {
                arguments[arg]->accept(*this);
                utils().convertType(*arguments[arg]->annotation().type, *function.parameterTypes()[arg], true);
            }
            arguments.front()->accept(*this);
            utils().fetchFreeMemoryPointer();
            utils().packedEncode(
                {arguments.front()->annotation().type},
                {function.parameterTypes().front()}
            );
            utils().toSizeAfterFreeMemoryPointer();
            m_context << logInstruction(logNumber);
            break;
        }
        case FunctionType::Kind::Event:
        {
            _functionCall.expression().accept(*this);
            auto const& event = dynamic_cast<EventDefinition const&>(function.declaration());
            unsigned numIndexed = 0;
            // All indexed arguments go to the stack
            for (unsigned arg = arguments.size(); arg > 0; --arg)
                if (event.parameters()[arg - 1]->isIndexed())
                {
                    ++numIndexed;
                    arguments[arg - 1]->accept(*this);
                    if (auto const& arrayType = dynamic_pointer_cast<ArrayType const>(function.parameterTypes()[arg - 1]))
                    {
                        utils().fetchFreeMemoryPointer();
                        utils().packedEncode(
                            {arguments[arg - 1]->annotation().type},
                            {arrayType}
                        );
                        utils().toSizeAfterFreeMemoryPointer();
                        m_context << Instruction::KECCAK256;
                    }
                    else
                        utils().convertType(
                            *arguments[arg - 1]->annotation().type,
                            *function.parameterTypes()[arg - 1],
                            true
                        );
                }
            if (!event.isAnonymous())
            {
                m_context << u256(h256::Arith(dev::keccak256(function.externalSignature())));
                ++numIndexed;
            }
            solAssert(numIndexed <= 4, "Too many indexed arguments.");
            // Copy all non-indexed arguments to memory (data)
            // Memory position is only a hack and should be removed once we have free memory pointer.
            TypePointers nonIndexedArgTypes;
            TypePointers nonIndexedParamTypes;
            for (unsigned arg = 0; arg < arguments.size(); ++arg)
                if (!event.parameters()[arg]->isIndexed())
                {
                    arguments[arg]->accept(*this);
                    nonIndexedArgTypes.push_back(arguments[arg]->annotation().type);
                    nonIndexedParamTypes.push_back(function.parameterTypes()[arg]);
                }
            utils().fetchFreeMemoryPointer();
            utils().abiEncode(nonIndexedArgTypes, nonIndexedParamTypes);
            // need: topic1 ... topicn memsize memstart
            utils().toSizeAfterFreeMemoryPointer();
            m_context << logInstruction(numIndexed);
            break;
        }
        case FunctionType::Kind::BlockHash:
        {
            arguments[0]->accept(*this);
            utils().convertType(*arguments[0]->annotation().type, *function.parameterTypes()[0], true);
            m_context << Instruction::BLOCKHASH;
            break;
        }
        case FunctionType::Kind::AddMod:
        case FunctionType::Kind::MulMod:
        {
            arguments[2]->accept(*this);
            utils().convertType(*arguments[2]->annotation().type, IntegerType(256));
            m_context << Instruction::DUP1 << Instruction::ISZERO;
            m_context.appendConditionalInvalid();
            for (unsigned i = 1; i < 3; i ++)
            {
                arguments[2 - i]->accept(*this);
                utils().convertType(*arguments[2 - i]->annotation().type, IntegerType(256));
            }
            if (function.kind() == FunctionType::Kind::AddMod)
                m_context << Instruction::ADDMOD;
            else
                m_context << Instruction::MULMOD;
            break;
        }
        case FunctionType::Kind::ECRecover:
        case FunctionType::Kind::SHA256:
        case FunctionType::Kind::RIPEMD160:
        {
            _functionCall.expression().accept(*this);
            static const map<FunctionType::Kind, u256> contractAddresses{{FunctionType::Kind::ECRecover, 1},
                                                               {FunctionType::Kind::SHA256, 2},
                                                               {FunctionType::Kind::RIPEMD160, 3}};
            m_context << contractAddresses.find(function.kind())->second;
            for (unsigned i = function.sizeOnStack(); i > 0; --i)
                m_context << swapInstruction(i);
            appendExternalFunctionCall(function, arguments);
            break;
        }
        case FunctionType::Kind::ByteArrayPush:
        case FunctionType::Kind::ArrayPush:
        {
            _functionCall.expression().accept(*this);
            solAssert(function.parameterTypes().size() == 1, "");
            solAssert(!!function.parameterTypes()[0], "");
            TypePointer paramType = function.parameterTypes()[0];
            shared_ptr<ArrayType> arrayType =
                function.kind() == FunctionType::Kind::ArrayPush ?
                make_shared<ArrayType>(DataLocation::Storage, paramType) :
                make_shared<ArrayType>(DataLocation::Storage);

            // stack: ArrayReference
            arguments[0]->accept(*this);
            TypePointer const& argType = arguments[0]->annotation().type;
            // stack: ArrayReference argValue
            utils().moveToStackTop(argType->sizeOnStack(), 1);
            // stack: argValue ArrayReference
            m_context << Instruction::DUP1;
            ArrayUtils(m_context).incrementDynamicArraySize(*arrayType);
            // stack: argValue ArrayReference newLength
            m_context << Instruction::SWAP1;
            // stack: argValue newLength ArrayReference
            m_context << u256(1) << Instruction::DUP3 << Instruction::SUB;
            // stack: argValue newLength ArrayReference (newLength-1)
            ArrayUtils(m_context).accessIndex(*arrayType, false);
            // stack: argValue newLength storageSlot slotOffset
            utils().moveToStackTop(3, argType->sizeOnStack());
            // stack: newLength storageSlot slotOffset argValue
            TypePointer type = arguments[0]->annotation().type->closestTemporaryType(arrayType->baseType());
            solAssert(type, "");
            utils().convertType(*argType, *type);
            utils().moveToStackTop(1 + type->sizeOnStack());
            utils().moveToStackTop(1 + type->sizeOnStack());
            // stack: newLength argValue storageSlot slotOffset
            if (function.kind() == FunctionType::Kind::ArrayPush)
                StorageItem(m_context, *paramType).storeValue(*type, _functionCall.location(), true);
            else
                StorageByteArrayElement(m_context).storeValue(*type, _functionCall.location(), true);
            break;
        }
        case FunctionType::Kind::ArrayPop:
        {
            _functionCall.expression().accept(*this);
            solAssert(function.parameterTypes().empty(), "");

            ArrayType const& arrayType = dynamic_cast<ArrayType const&>(
                *dynamic_cast<MemberAccess const&>(_functionCall.expression()).expression().annotation().type
            );
            solAssert(arrayType.dataStoredIn(DataLocation::Storage), "");

            ArrayUtils(m_context).popStorageArrayElement(arrayType);
            break;
        }
        case FunctionType::Kind::ObjectCreation:
        {
            ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_functionCall.annotation().type);
            _functionCall.expression().accept(*this);
            solAssert(arguments.size() == 1, "");

            // Fetch requested length.
            arguments[0]->accept(*this);
            utils().convertType(*arguments[0]->annotation().type, IntegerType(256));

            // Stack: requested_length
            utils().fetchFreeMemoryPointer();

            // Stack: requested_length memptr
            m_context << Instruction::SWAP1;
            // Stack: memptr requested_length
            // store length
            m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::MSTORE;
            // Stack: memptr requested_length
            // update free memory pointer
            m_context << Instruction::DUP1;
            // Stack: memptr requested_length requested_length
            if (arrayType.isByteArray())
                // Round up to multiple of 32
                m_context << u256(31) << Instruction::ADD << u256(31) << Instruction::NOT << Instruction::AND;
            else
                m_context << arrayType.baseType()->memoryHeadSize() << Instruction::MUL;
            // stacK: memptr requested_length data_size
            m_context << u256(32) << Instruction::ADD;
            m_context << Instruction::DUP3 << Instruction::ADD;
            utils().storeFreeMemoryPointer();
            // Stack: memptr requested_length

            // Check if length is zero
            m_context << Instruction::DUP1 << Instruction::ISZERO;
            auto skipInit = m_context.appendConditionalJump();
            // Always initialize because the free memory pointer might point at
            // a dirty memory area.
            m_context << Instruction::DUP2 << u256(32) << Instruction::ADD;
            utils().zeroInitialiseMemoryArray(arrayType);
            m_context << skipInit;
            m_context << Instruction::POP;
            break;
        }
        case FunctionType::Kind::Assert:
        case FunctionType::Kind::Require:
        {
            arguments.front()->accept(*this);
            utils().convertType(*arguments.front()->annotation().type, *function.parameterTypes().front(), false);
            if (arguments.size() > 1)
            {
                // Users probably expect the second argument to be evaluated
                // even if the condition is false, as would be the case for an actual
                // function call.
                solAssert(arguments.size() == 2, "");
                solAssert(function.kind() == FunctionType::Kind::Require, "");
                arguments.at(1)->accept(*this);
                utils().moveIntoStack(1, arguments.at(1)->annotation().type->sizeOnStack());
            }
            // Stack: <error string (unconverted)> <condition>
            // jump if condition was met
            m_context << Instruction::ISZERO << Instruction::ISZERO;
            auto success = m_context.appendConditionalJump();
            if (function.kind() == FunctionType::Kind::Assert)
                // condition was not met, flag an error
                m_context.appendInvalid();
            else if (arguments.size() > 1)
            {
                utils().revertWithStringData(*arguments.at(1)->annotation().type);
                // Here, the argument is consumed, but in the other branch, it is still there.
                m_context.adjustStackOffset(arguments.at(1)->annotation().type->sizeOnStack());
            }
            else
                m_context.appendRevert();
            // the success branch
            m_context << success;
            if (arguments.size() > 1)
                utils().popStackElement(*arguments.at(1)->annotation().type);
            break;
        }
        case FunctionType::Kind::ABIEncode:
        case FunctionType::Kind::ABIEncodePacked:
        case FunctionType::Kind::ABIEncodeWithSelector:
        case FunctionType::Kind::ABIEncodeWithSignature:
        {
            bool const isPacked = function.kind() == FunctionType::Kind::ABIEncodePacked;
            bool const hasSelectorOrSignature =
                function.kind() == FunctionType::Kind::ABIEncodeWithSelector ||
                function.kind() == FunctionType::Kind::ABIEncodeWithSignature;

            TypePointers argumentTypes;
            TypePointers targetTypes;
            for (unsigned i = 0; i < arguments.size(); ++i)
            {
                arguments[i]->accept(*this);
                // Do not keep the selector as part of the ABI encoded args
                if (!hasSelectorOrSignature || i > 0)
                    argumentTypes.push_back(arguments[i]->annotation().type);
            }
            utils().fetchFreeMemoryPointer();
            // stack now: [<selector>] <arg1> .. <argN> <free_mem>

            // adjust by 32(+4) bytes to accommodate the length(+selector)
            m_context << u256(32 + (hasSelectorOrSignature ? 4 : 0)) << Instruction::ADD;
            // stack now: [<selector>] <arg1> .. <argN> <data_encoding_area_start>

            if (isPacked)
            {
                solAssert(!function.padArguments(), "");
                utils().packedEncode(argumentTypes, TypePointers());
            }
            else
            {
                solAssert(function.padArguments(), "");
                utils().abiEncode(argumentTypes, TypePointers());
            }
            utils().fetchFreeMemoryPointer();
            // stack: [<selector>] <data_encoding_area_end> <bytes_memory_ptr>

            // size is end minus start minus length slot
            m_context.appendInlineAssembly(R"({
                mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20))
            })", {"mem_end", "mem_ptr"});
            m_context << Instruction::SWAP1;
            utils().storeFreeMemoryPointer();
            // stack: [<selector>] <memory ptr>

            if (hasSelectorOrSignature)
            {
                // stack: <selector> <memory pointer>
                solAssert(arguments.size() >= 1, "");
                TypePointer const& selectorType = arguments[0]->annotation().type;
                utils().moveIntoStack(selectorType->sizeOnStack());
                TypePointer dataOnStack = selectorType;
                // stack: <memory pointer> <selector>
                if (function.kind() == FunctionType::Kind::ABIEncodeWithSignature)
                {
                    // hash the signature
                    if (auto const* stringType = dynamic_cast<StringLiteralType const*>(selectorType.get()))
                    {
                        FixedHash<4> hash(dev::keccak256(stringType->value()));
                        m_context << (u256(FixedHash<4>::Arith(hash)) << (256 - 32));
                        dataOnStack = make_shared<FixedBytesType>(4);
                    }
                    else
                    {
                        utils().fetchFreeMemoryPointer();
                        // stack: <memory pointer> <selector> <free mem ptr>
                        utils().packedEncode(TypePointers{selectorType}, TypePointers());
                        utils().toSizeAfterFreeMemoryPointer();
                        m_context << Instruction::KECCAK256;
                        // stack: <memory pointer> <hash>

                        dataOnStack = make_shared<FixedBytesType>(32);
                    }
                }
                else
                {
                    solAssert(function.kind() == FunctionType::Kind::ABIEncodeWithSelector, "");
                }

                utils().convertType(*dataOnStack, FixedBytesType(4), true);

                // stack: <memory pointer> <selector>

                // load current memory, mask and combine the selector
                string mask = formatNumber((u256(-1) >> 32));
                m_context.appendInlineAssembly(R"({
                    let data_start := add(mem_ptr, 0x20)
                    let data := mload(data_start)
                    let mask := )" + mask + R"(
                    mstore(data_start, or(and(data, mask), selector))
                })", {"mem_ptr", "selector"});
                m_context << Instruction::POP;
            }

            // stack now: <memory pointer>
            break;
        }
        case FunctionType::Kind::GasLeft:
            m_context << Instruction::GAS;
            break;
        default:
            solAssert(false, "Invalid function type.");
        }
    }
    return false;
}

bool ExpressionCompiler::visit(NewExpression const&)
{
    // code is created for the function call (CREATION) only
    return false;
}

bool ExpressionCompiler::visit(MemberAccess const& _memberAccess)
{
    CompilerContext::LocationSetter locationSetter(m_context, _memberAccess);
    // Check whether the member is a bound function.
    ASTString const& member = _memberAccess.memberName();
    if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type.get()))
        if (funType->bound())
        {
            _memberAccess.expression().accept(*this);
            utils().convertType(
                *_memberAccess.expression().annotation().type,
                *funType->selfType(),
                true
            );
            if (funType->kind() == FunctionType::Kind::Internal)
            {
                FunctionDefinition const& funDef = dynamic_cast<decltype(funDef)>(funType->declaration());
                utils().pushCombinedFunctionEntryLabel(funDef);
                utils().moveIntoStack(funType->selfType()->sizeOnStack(), 1);
            }
            else
            {
                solAssert(funType->kind() == FunctionType::Kind::DelegateCall, "");
                auto contract = dynamic_cast<ContractDefinition const*>(funType->declaration().scope());
                solAssert(contract && contract->isLibrary(), "");
                m_context.appendLibraryAddress(contract->fullyQualifiedName());
                m_context << funType->externalIdentifier();
                utils().moveIntoStack(funType->selfType()->sizeOnStack(), 2);
            }
            return false;
        }

    // Special processing for TypeType because we do not want to visit the library itself
    // for internal functions, or enum/struct definitions.
    if (TypeType const* type = dynamic_cast<TypeType const*>(_memberAccess.expression().annotation().type.get()))
    {
        if (dynamic_cast<ContractType const*>(type->actualType().get()))
        {
            solAssert(_memberAccess.annotation().type, "_memberAccess has no type");
            if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type.get()))
            {
                switch (funType->kind())
                {
                case FunctionType::Kind::Internal:
                    // We do not visit the expression here on purpose, because in the case of an
                    // internal library function call, this would push the library address forcing
                    // us to link against it although we actually do not need it.
                    if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration))
                        utils().pushCombinedFunctionEntryLabel(*function);
                    else
                        solAssert(false, "Function not found in member access");
                    break;
                case FunctionType::Kind::Event:
                    if (!dynamic_cast<EventDefinition const*>(_memberAccess.annotation().referencedDeclaration))
                        solAssert(false, "event not found");
                    // no-op, because the parent node will do the job
                    break;
                case FunctionType::Kind::External:
                case FunctionType::Kind::Creation:
                case FunctionType::Kind::DelegateCall:
                case FunctionType::Kind::CallCode:
                case FunctionType::Kind::Send:
                case FunctionType::Kind::BareCall:
                case FunctionType::Kind::BareCallCode:
                case FunctionType::Kind::BareDelegateCall:
                case FunctionType::Kind::Transfer:
                    _memberAccess.expression().accept(*this);
                    m_context << funType->externalIdentifier();
                    break;
                case FunctionType::Kind::Log0:
                case FunctionType::Kind::Log1:
                case FunctionType::Kind::Log2:
                case FunctionType::Kind::Log3:
                case FunctionType::Kind::Log4:
                case FunctionType::Kind::ECRecover:
                case FunctionType::Kind::SHA256:
                case FunctionType::Kind::RIPEMD160:
                default:
                    solAssert(false, "unsupported member function");
                }
            }
            else if (dynamic_cast<TypeType const*>(_memberAccess.annotation().type.get()))
            {
                // no-op
            }
            else if (auto variable = dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration))
                appendVariable(*variable, static_cast<Expression const&>(_memberAccess));
            else
                _memberAccess.expression().accept(*this);
        }
        else if (auto enumType = dynamic_cast<EnumType const*>(type->actualType().get()))
        {
            _memberAccess.expression().accept(*this);
            m_context << enumType->memberValue(_memberAccess.memberName());
        }
        else
            _memberAccess.expression().accept(*this);
        return false;
    }
    // Another special case for `this.f.selector` which does not need the address.
    // There are other uses of `.selector` which do need the address, but we want this
    // specific use to be a pure expression.
    if (
        _memberAccess.expression().annotation().type->category() == Type::Category::Function &&
        member == "selector"
    )
        if (auto const* expr = dynamic_cast<MemberAccess const*>(&_memberAccess.expression()))
            if (auto const* exprInt = dynamic_cast<Identifier const*>(&expr->expression()))
                if (exprInt->name() == "this")
                    if (Declaration const* declaration = expr->annotation().referencedDeclaration)
                    {
                        u256 identifier;
                        if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
                            identifier = FunctionType(*variable).externalIdentifier();
                        else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
                            identifier = FunctionType(*function).externalIdentifier();
                        else
                            solAssert(false, "Contract member is neither variable nor function.");
                        m_context << identifier;
                        /// need to store store it as bytes4
                        utils().leftShiftNumberOnStack(224);
                        return false;
                    }

    _memberAccess.expression().accept(*this);
    switch (_memberAccess.expression().annotation().type->category())
    {
    case Type::Category::Contract:
    case Type::Category::Integer:
    {
        bool alsoSearchInteger = false;
        if (_memberAccess.expression().annotation().type->category() == Type::Category::Contract)
        {
            ContractType const& type = dynamic_cast<ContractType const&>(*_memberAccess.expression().annotation().type);
            if (type.isSuper())
            {
                solAssert(!!_memberAccess.annotation().referencedDeclaration, "Referenced declaration not resolved.");
                utils().pushCombinedFunctionEntryLabel(m_context.superFunction(
                    dynamic_cast<FunctionDefinition const&>(*_memberAccess.annotation().referencedDeclaration),
                    type.contractDefinition()
                ));
            }
            else
            {
                // ordinary contract type
                if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration)
                {
                    u256 identifier;
                    if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
                        identifier = FunctionType(*variable).externalIdentifier();
                    else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
                        identifier = FunctionType(*function).externalIdentifier();
                    else
                        solAssert(false, "Contract member is neither variable nor function.");
                    utils().convertType(type, IntegerType(160, IntegerType::Modifier::Address), true);
                    m_context << identifier;
                }
                else
                    // not found in contract, search in members inherited from address
                    alsoSearchInteger = true;
            }
        }
        else
            alsoSearchInteger = true;

        if (alsoSearchInteger)
        {
            if (member == "balance")
            {
                utils().convertType(
                    *_memberAccess.expression().annotation().type,
                    IntegerType(160, IntegerType::Modifier::Address),
                    true
                );
                m_context << Instruction::BALANCE;
            }
            else if ((set<string>{"send", "transfer", "call", "callcode", "delegatecall"}).count(member))
                utils().convertType(
                    *_memberAccess.expression().annotation().type,
                    IntegerType(160, IntegerType::Modifier::Address),
                    true
                );
            else
                solAssert(false, "Invalid member access to integer");
        }
        break;
    }
    case Type::Category::Function:
        if (member == "selector")
        {
            m_context << Instruction::SWAP1 << Instruction::POP;
            /// need to store store it as bytes4
            utils().leftShiftNumberOnStack(224);
        }
        else
            solAssert(!!_memberAccess.expression().annotation().type->memberType(member),
                 "Invalid member access to function.");
        break;
    case Type::Category::Magic:
        // we can ignore the kind of magic and only look at the name of the member
        if (member == "coinbase")
            m_context << Instruction::COINBASE;
        else if (member == "timestamp")
            m_context << Instruction::TIMESTAMP;
        else if (member == "difficulty")
            m_context << Instruction::DIFFICULTY;
        else if (member == "number")
            m_context << Instruction::NUMBER;
        else if (member == "gaslimit")
            m_context << Instruction::GASLIMIT;
        else if (member == "sender")
            m_context << Instruction::CALLER;
        else if (member == "value")
            m_context << Instruction::CALLVALUE;
        else if (member == "origin")
            m_context << Instruction::ORIGIN;
        else if (member == "gas")
            m_context << Instruction::GAS;
        else if (member == "gasprice")
            m_context << Instruction::GASPRICE;
        else if (member == "data")
            m_context << u256(0) << Instruction::CALLDATASIZE;
        else if (member == "sig")
            m_context << u256(0) << Instruction::CALLDATALOAD
                << (u256(0xffffffff) << (256 - 32)) << Instruction::AND;
        else if (member == "blockhash")
        {
        }
        else
            solAssert(false, "Unknown magic member.");
        break;
    case Type::Category::Struct:
    {
        StructType const& type = dynamic_cast<StructType const&>(*_memberAccess.expression().annotation().type);
        switch (type.location())
        {
        case DataLocation::Storage:
        {
            pair<u256, unsigned> const& offsets = type.storageOffsetsOfMember(member);
            m_context << offsets.first << Instruction::ADD << u256(offsets.second);
            setLValueToStorageItem(_memberAccess);
            break;
        }
        case DataLocation::Memory:
        {
            m_context << type.memoryOffsetOfMember(member) << Instruction::ADD;
            setLValue<MemoryItem>(_memberAccess, *_memberAccess.annotation().type);
            break;
        }
        default:
            solAssert(false, "Illegal data location for struct.");
        }
        break;
    }
    case Type::Category::Enum:
    {
        EnumType const& type = dynamic_cast<EnumType const&>(*_memberAccess.expression().annotation().type);
        m_context << type.memberValue(_memberAccess.memberName());
        break;
    }
    case Type::Category::Array:
    {
        auto const& type = dynamic_cast<ArrayType const&>(*_memberAccess.expression().annotation().type);
        if (member == "length")
        {
            if (!type.isDynamicallySized())
            {
                utils().popStackElement(type);
                m_context << type.length();
            }
            else
                switch (type.location())
                {
                case DataLocation::CallData:
                    m_context << Instruction::SWAP1 << Instruction::POP;
                    break;
                case DataLocation::Storage:
                    setLValue<StorageArrayLength>(_memberAccess, type);
                    break;
                case DataLocation::Memory:
                    m_context << Instruction::MLOAD;
                    break;
                }
        }
        else if (member == "push" || member == "pop")
        {
            solAssert(
                type.isDynamicallySized() &&
                type.location() == DataLocation::Storage &&
                type.category() == Type::Category::Array,
                "Tried to use ." + member + "() on a non-dynamically sized array"
            );
        }
        else
            solAssert(false, "Illegal array member.");
        break;
    }
    case Type::Category::FixedBytes:
    {
        auto const& type = dynamic_cast<FixedBytesType const&>(*_memberAccess.expression().annotation().type);
        utils().popStackElement(type);
        if (member == "length")
            m_context << u256(type.numBytes());
        else
            solAssert(false, "Illegal fixed bytes member.");
        break;
    }
    default:
        solAssert(false, "Member access to unknown type.");
    }
    return false;
}

bool ExpressionCompiler::visit(IndexAccess const& _indexAccess)
{
    CompilerContext::LocationSetter locationSetter(m_context, _indexAccess);
    _indexAccess.baseExpression().accept(*this);

    Type const& baseType = *_indexAccess.baseExpression().annotation().type;

    if (baseType.category() == Type::Category::Mapping)
    {
        // stack: storage_base_ref
        TypePointer keyType = dynamic_cast<MappingType const&>(baseType).keyType();
        solAssert(_indexAccess.indexExpression(), "Index expression expected.");
        if (keyType->isDynamicallySized())
        {
            _indexAccess.indexExpression()->accept(*this);
            utils().fetchFreeMemoryPointer();
            // stack: base index mem
            // note: the following operations must not allocate memory!
            utils().packedEncode(
                TypePointers{_indexAccess.indexExpression()->annotation().type},
                TypePointers{keyType}
            );
            m_context << Instruction::SWAP1;
            utils().storeInMemoryDynamic(IntegerType(256));
            utils().toSizeAfterFreeMemoryPointer();
        }
        else
        {
            m_context << u256(0); // memory position
            appendExpressionCopyToMemory(*keyType, *_indexAccess.indexExpression());
            m_context << Instruction::SWAP1;
            solAssert(CompilerUtils::freeMemoryPointer >= 0x40, "");
            utils().storeInMemoryDynamic(IntegerType(256));
            m_context << u256(0);
        }
        m_context << Instruction::KECCAK256;
        m_context << u256(0);
        setLValueToStorageItem(_indexAccess);
    }
    else if (baseType.category() == Type::Category::Array)
    {
        ArrayType const& arrayType = dynamic_cast<ArrayType const&>(baseType);
        solAssert(_indexAccess.indexExpression(), "Index expression expected.");

        _indexAccess.indexExpression()->accept(*this);
        utils().convertType(*_indexAccess.indexExpression()->annotation().type, IntegerType(256), true);
        // stack layout: <base_ref> [<length>] <index>
        ArrayUtils(m_context).accessIndex(arrayType);
        switch (arrayType.location())
        {
        case DataLocation::Storage:
            if (arrayType.isByteArray())
            {
                solAssert(!arrayType.isString(), "Index access to string is not allowed.");
                setLValue<StorageByteArrayElement>(_indexAccess);
            }
            else
                setLValueToStorageItem(_indexAccess);
            break;
        case DataLocation::Memory:
            setLValue<MemoryItem>(_indexAccess, *_indexAccess.annotation().type, !arrayType.isByteArray());
            break;
        case DataLocation::CallData:
            //@todo if we implement this, the value in calldata has to be added to the base offset
            solUnimplementedAssert(!arrayType.baseType()->isDynamicallySized(), "Nested arrays not yet implemented.");
            if (arrayType.baseType()->isValueType())
                CompilerUtils(m_context).loadFromMemoryDynamic(
                    *arrayType.baseType(),
                    true,
                    !arrayType.isByteArray(),
                    false
                );
            break;
        }
    }
    else if (baseType.category() == Type::Category::FixedBytes)
    {
        FixedBytesType const& fixedBytesType = dynamic_cast<FixedBytesType const&>(baseType);
        solAssert(_indexAccess.indexExpression(), "Index expression expected.");

        _indexAccess.indexExpression()->accept(*this);
        utils().convertType(*_indexAccess.indexExpression()->annotation().type, IntegerType(256), true);
        // stack layout: <value> <index>
        // check out-of-bounds access
        m_context << u256(fixedBytesType.numBytes());
        m_context << Instruction::DUP2 << Instruction::LT << Instruction::ISZERO;
        // out-of-bounds access throws exception
        m_context.appendConditionalInvalid();

        m_context << Instruction::BYTE;
        utils().leftShiftNumberOnStack(256 - 8);
    }
    else if (baseType.category() == Type::Category::TypeType)
    {
        solAssert(baseType.sizeOnStack() == 0, "");
        solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, "");
        // no-op - this seems to be a lone array type (`structType[];`)
    }
    else
        solAssert(false, "Index access only allowed for mappings or arrays.");

    return false;
}

void ExpressionCompiler::endVisit(Identifier const& _identifier)
{
    CompilerContext::LocationSetter locationSetter(m_context, _identifier);
    Declaration const* declaration = _identifier.annotation().referencedDeclaration;
    if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration))
    {
        switch (magicVar->type()->category())
        {
        case Type::Category::Contract:
            // "this" or "super"
            if (!dynamic_cast<ContractType const&>(*magicVar->type()).isSuper())
                m_context << Instruction::ADDRESS;
            break;
        case Type::Category::Integer:
            // "now"
            m_context << Instruction::TIMESTAMP;
            break;
        default:
            break;
        }
    }
    else if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration))
        // If the identifier is called right away, this code is executed in visit(FunctionCall...), because
        // we want to avoid having a reference to the runtime function entry point in the
        // constructor context, since this would force the compiler to include unreferenced
        // internal functions in the runtime contex.
        utils().pushCombinedFunctionEntryLabel(m_context.resolveVirtualFunction(*functionDef));
    else if (auto variable = dynamic_cast<VariableDeclaration const*>(declaration))
        appendVariable(*variable, static_cast<Expression const&>(_identifier));
    else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
    {
        if (contract->isLibrary())
            m_context.appendLibraryAddress(contract->fullyQualifiedName());
    }
    else if (dynamic_cast<EventDefinition const*>(declaration))
    {
        // no-op
    }
    else if (dynamic_cast<EnumDefinition const*>(declaration))
    {
        // no-op
    }
    else if (dynamic_cast<StructDefinition const*>(declaration))
    {
        // no-op
    }
    else
    {
        solAssert(false, "Identifier type not expected in expression context.");
    }
}

void ExpressionCompiler::endVisit(Literal const& _literal)
{
    CompilerContext::LocationSetter locationSetter(m_context, _literal);
    TypePointer type = _literal.annotation().type;
    
    switch (type->category())
    {
    case Type::Category::RationalNumber:
    case Type::Category::Bool:
    case Type::Category::Integer:
        m_context << type->literalValue(&_literal);
        break;
    case Type::Category::StringLiteral:
        break; // will be done during conversion
    default:
        solUnimplemented("Only integer, boolean and string literals implemented for now.");
    }
}

void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation)
{
    Token::Value const c_op = _binaryOperation.getOperator();
    solAssert(c_op == Token::Or || c_op == Token::And, "");

    _binaryOperation.leftExpression().accept(*this);
    m_context << Instruction::DUP1;
    if (c_op == Token::And)
        m_context << Instruction::ISZERO;
    eth::AssemblyItem endLabel = m_context.appendConditionalJump();
    m_context << Instruction::POP;
    _binaryOperation.rightExpression().accept(*this);
    m_context << endLabel;
}

void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type)
{
    solAssert(_type.sizeOnStack() == 1, "Comparison of multi-slot types.");
    if (_operator == Token::Equal || _operator == Token::NotEqual)
    {
        if (FunctionType const* funType = dynamic_cast<decltype(funType)>(&_type))
        {
            if (funType->kind() == FunctionType::Kind::Internal)
            {
                // We have to remove the upper bits (construction time value) because they might
                // be "unknown" in one of the operands and not in the other.
                m_context << ((u256(1) << 32) - 1) << Instruction::AND;
                m_context << Instruction::SWAP1;
                m_context << ((u256(1) << 32) - 1) << Instruction::AND;
            }
        }
        m_context << Instruction::EQ;
        if (_operator == Token::NotEqual)
            m_context << Instruction::ISZERO;
    }
    else
    {
        bool isSigned = false;
        if (auto type = dynamic_cast<IntegerType const*>(&_type))
            isSigned = type->isSigned();

        switch (_operator)
        {
        case Token::GreaterThanOrEqual:
            m_context <<
                (isSigned ? Instruction::SLT : Instruction::LT) <<
                Instruction::ISZERO;
            break;
        case Token::LessThanOrEqual:
            m_context <<
                (isSigned ? Instruction::SGT : Instruction::GT) <<
                Instruction::ISZERO;
            break;
        case Token::GreaterThan:
            m_context << (isSigned ? Instruction::SGT : Instruction::GT);
            break;
        case Token::LessThan:
            m_context << (isSigned ? Instruction::SLT : Instruction::LT);
            break;
        default:
            solAssert(false, "Unknown comparison operator.");
        }
    }
}

void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type)
{
    if (Token::isArithmeticOp(_operator))
        appendArithmeticOperatorCode(_operator, _type);
    else if (Token::isBitOp(_operator))
        appendBitOperatorCode(_operator);
    else
        solAssert(false, "Unknown binary operator.");
}

void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type)
{
    IntegerType const& type = dynamic_cast<IntegerType const&>(_type);
    bool const c_isSigned = type.isSigned();

    if (_type.category() == Type::Category::FixedPoint)
        solUnimplemented("Not yet implemented - FixedPointType.");

    switch (_operator)
    {
    case Token::Add:
        m_context << Instruction::ADD;
        break;
    case Token::Sub:
        m_context << Instruction::SUB;
        break;
    case Token::Mul:
        m_context << Instruction::MUL;
        break;
    case Token::Div:
    case Token::Mod:
    {
        // Test for division by zero
        m_context << Instruction::DUP2 << Instruction::ISZERO;
        m_context.appendConditionalInvalid();

        if (_operator == Token::Div)
            m_context << (c_isSigned ? Instruction::SDIV : Instruction::DIV);
        else
            m_context << (c_isSigned ? Instruction::SMOD : Instruction::MOD);
        break;
    }
    case Token::Exp:
        m_context << Instruction::EXP;
        break;
    default:
        solAssert(false, "Unknown arithmetic operator.");
    }
}

void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator)
{
    switch (_operator)
    {
    case Token::BitOr:
        m_context << Instruction::OR;
        break;
    case Token::BitAnd:
        m_context << Instruction::AND;
        break;
    case Token::BitXor:
        m_context << Instruction::XOR;
        break;
    default:
        solAssert(false, "Unknown bit operator.");
    }
}

void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator, Type const& _valueType, Type const& _shiftAmountType)
{
    // stack: shift_amount value_to_shift

    bool c_valueSigned = false;
    if (auto valueType = dynamic_cast<IntegerType const*>(&_valueType))
        c_valueSigned = valueType->isSigned();
    else
        solAssert(dynamic_cast<FixedBytesType const*>(&_valueType), "Only integer and fixed bytes type supported for shifts.");

    // The amount can be a RationalNumberType too.
    bool c_amountSigned = false;
    if (auto amountType = dynamic_cast<RationalNumberType const*>(&_shiftAmountType))
    {
        // This should be handled by the type checker.
        solAssert(amountType->integerType(), "");
        solAssert(!amountType->integerType()->isSigned(), "");
    }
    else if (auto amountType = dynamic_cast<IntegerType const*>(&_shiftAmountType))
        c_amountSigned = amountType->isSigned();
    else
        solAssert(false, "Invalid shift amount type.");

    // shift by negative amount throws exception
    if (c_amountSigned)
    {
        m_context << u256(0) << Instruction::DUP3 << Instruction::SLT;
        m_context.appendConditionalInvalid();
    }

    m_context << Instruction::SWAP1;
    // stack: value_to_shift shift_amount

    switch (_operator)
    {
    case Token::SHL:
        if (m_context.evmVersion().hasBitwiseShifting())
            m_context << Instruction::SHL;
        else
            m_context << u256(2) << Instruction::EXP << Instruction::MUL;
        break;
    case Token::SAR:
        if (m_context.evmVersion().hasBitwiseShifting())
            m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR);
        else
        {
            if (c_valueSigned)
                // In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive.
                // Therefor xor'ing with xor_mask is the identity and the computation reduces to
                // div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values
                // arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results
                // in discarding bits on the right and filling with zeros from the left).
                // For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the
                // right and fills in ones from the left. This is achieved as follows:
                // If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask
                // will flip all bits. First all bits in value_to_shift are flipped. As for the positive case,
                // dividing by a power of two using integer arithmetic results in discarding bits to the right
                // and filling with zeros from the left. Flipping all bits in the result again, turns all zeros
                // on the left to ones and restores the non-discarded, shifted bits to their original value (they
                // have now been flipped twice). In summary we now have discarded bits to the right and filled with
                // ones from the left, i.e. we have performed an arithmetic right shift.
                m_context.appendInlineAssembly(R"({
                    let xor_mask := sub(0, slt(value_to_shift, 0))
                    value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask)
                })", {"value_to_shift", "shift_amount"});
            else
                m_context.appendInlineAssembly(R"({
                    value_to_shift := div(value_to_shift, exp(2, shift_amount))
                })", {"value_to_shift", "shift_amount"});
            m_context << Instruction::POP;

        }
        break;
    case Token::SHR:
    default:
        solAssert(false, "Unknown shift operator.");
    }
}

void ExpressionCompiler::appendExternalFunctionCall(
    FunctionType const& _functionType,
    vector<ASTPointer<Expression const>> const& _arguments
)
{
    solAssert(
        _functionType.takesArbitraryParameters() ||
        _arguments.size() == _functionType.parameterTypes().size(), ""
    );

    // Assumed stack content here:
    // <stack top>
    // value [if _functionType.valueSet()]
    // gas [if _functionType.gasSet()]
    // self object [if bound - moved to top right away]
    // function identifier [unless bare]
    // contract address

    unsigned selfSize = _functionType.bound() ? _functionType.selfType()->sizeOnStack() : 0;
    unsigned gasValueSize = (_functionType.gasSet() ? 1 : 0) + (_functionType.valueSet() ? 1 : 0);
    unsigned contractStackPos = m_context.currentToBaseStackOffset(1 + gasValueSize + selfSize + (_functionType.isBareCall() ? 0 : 1));
    unsigned gasStackPos = m_context.currentToBaseStackOffset(gasValueSize);
    unsigned valueStackPos = m_context.currentToBaseStackOffset(1);

    // move self object to top
    if (_functionType.bound())
        utils().moveToStackTop(gasValueSize, _functionType.selfType()->sizeOnStack());

    bool const v050 = m_context.experimentalFeatureActive(ExperimentalFeature::V050);
    auto funKind = _functionType.kind();
    bool returnSuccessCondition = funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareCallCode || funKind == FunctionType::Kind::BareDelegateCall;
    bool isCallCode = funKind == FunctionType::Kind::BareCallCode || funKind == FunctionType::Kind::CallCode;
    bool isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall;
    bool useStaticCall =
        _functionType.stateMutability() <= StateMutability::View &&
        v050 &&
        m_context.evmVersion().hasStaticCall();

    bool haveReturndatacopy = m_context.evmVersion().supportsReturndata();
    unsigned retSize = 0;
    TypePointers returnTypes;
    if (returnSuccessCondition)
        retSize = 0; // return value actually is success condition
    else if (haveReturndatacopy)
        returnTypes = _functionType.returnParameterTypes();
    else
        returnTypes = _functionType.returnParameterTypesWithoutDynamicTypes();

    bool dynamicReturnSize = false;
    for (auto const& retType: returnTypes)
        if (retType->isDynamicallyEncoded())
        {
            solAssert(haveReturndatacopy, "");
            dynamicReturnSize = true;
            retSize = 0;
            break;
        }
        else
            retSize += retType->calldataEncodedSize();

    // Evaluate arguments.
    TypePointers argumentTypes;
    TypePointers parameterTypes = _functionType.parameterTypes();
    if (_functionType.bound())
    {
        argumentTypes.push_back(_functionType.selfType());
        parameterTypes.insert(parameterTypes.begin(), _functionType.selfType());
    }
    for (size_t i = 0; i < _arguments.size(); ++i)
    {
        _arguments[i]->accept(*this);
        argumentTypes.push_back(_arguments[i]->annotation().type);
    }

    if (funKind == FunctionType::Kind::ECRecover)
    {
        // Clears 32 bytes of currently free memory and advances free memory pointer.
        // Output area will be "start of input area" - 32.
        // The reason is that a failing ECRecover cannot be detected, it will just return
        // zero bytes (which we cannot detect).
        solAssert(0 < retSize && retSize <= 32, "");
        utils().fetchFreeMemoryPointer();
        m_context << u256(0) << Instruction::DUP2 << Instruction::MSTORE;
        m_context << u256(32) << Instruction::ADD;
        utils().storeFreeMemoryPointer();
    }

    if (!m_context.evmVersion().canOverchargeGasForCall())
    {
        // Touch the end of the output area so that we do not pay for memory resize during the call
        // (which we would have to subtract from the gas left)
        // We could also just use MLOAD; POP right before the gas calculation, but the optimizer
        // would remove that, so we use MSTORE here.
        if (!_functionType.gasSet() && retSize > 0)
        {
            m_context << u256(0);
            utils().fetchFreeMemoryPointer();
            // This touches too much, but that way we save some rounding arithmetics
            m_context << u256(retSize) << Instruction::ADD << Instruction::MSTORE;
        }
    }

    // Copy function identifier to memory.
    utils().fetchFreeMemoryPointer();
    if (!_functionType.isBareCall())
    {
        m_context << dupInstruction(2 + gasValueSize + CompilerUtils::sizeOnStack(argumentTypes));
        utils().storeInMemoryDynamic(IntegerType(8 * CompilerUtils::dataStartOffset), false);
    }

    // If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place.
    // Move arguments to memory, will not update the free memory pointer (but will update the memory
    // pointer on the stack).
    utils().encodeToMemory(
        argumentTypes,
        parameterTypes,
        _functionType.padArguments(),
        _functionType.takesArbitraryParameters() || _functionType.isBareCall(),
        isCallCode || isDelegateCall
    );

    // Stack now:
    // <stack top>
    // input_memory_end
    // value [if _functionType.valueSet()]
    // gas [if _functionType.gasSet()]
    // function identifier [unless bare]
    // contract address

    // Output data will replace input data, unless we have ECRecover (then, output
    // area will be 32 bytes just before input area).
    // put on stack: <size of output> <memory pos of output> <size of input> <memory pos of input>
    m_context << u256(retSize);
    utils().fetchFreeMemoryPointer(); // This is the start of input
    if (funKind == FunctionType::Kind::ECRecover)
    {
        // In this case, output is 32 bytes before input and has already been cleared.
        m_context << u256(32) << Instruction::DUP2 << Instruction::SUB << Instruction::SWAP1;
        // Here: <input end> <output size> <outpos> <input pos>
        m_context << Instruction::DUP1 << Instruction::DUP5 << Instruction::SUB;
        m_context << Instruction::SWAP1;
    }
    else
    {
        m_context << Instruction::DUP1 << Instruction::DUP4 << Instruction::SUB;
        m_context << Instruction::DUP2;
    }

    // CALL arguments: outSize, outOff, inSize, inOff (already present up to here)
    // [value,] addr, gas (stack top)
    if (isDelegateCall)
        solAssert(!_functionType.valueSet(), "Value set for delegatecall");
    else if (useStaticCall)
        solAssert(!_functionType.valueSet(), "Value set for staticcall");
    else if (_functionType.valueSet())
        m_context << dupInstruction(m_context.baseToCurrentStackOffset(valueStackPos));
    else
        m_context << u256(0);
    m_context << dupInstruction(m_context.baseToCurrentStackOffset(contractStackPos));

    bool existenceChecked = false;
    // Check the the target contract exists (has code) for non-low-level calls.
    if (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::CallCode || funKind == FunctionType::Kind::DelegateCall)
    {
        m_context << Instruction::DUP1 << Instruction::EXTCODESIZE << Instruction::ISZERO;
        // TODO: error message?
        m_context.appendConditionalRevert();
        existenceChecked = true;
    }

    if (_functionType.gasSet())
        m_context << dupInstruction(m_context.baseToCurrentStackOffset(gasStackPos));
    else if (m_context.evmVersion().canOverchargeGasForCall())
        // Send all gas (requires tangerine whistle EVM)
        m_context << Instruction::GAS;
    else
    {
        // send all gas except the amount needed to execute "SUB" and "CALL"
        // @todo this retains too much gas for now, needs to be fine-tuned.
        u256 gasNeededByCaller = eth::GasCosts::callGas(m_context.evmVersion()) + 10;
        if (_functionType.valueSet())
            gasNeededByCaller += eth::GasCosts::callValueTransferGas;
        if (!existenceChecked)
            gasNeededByCaller += eth::GasCosts::callNewAccountGas; // we never know
        m_context << gasNeededByCaller << Instruction::GAS << Instruction::SUB;
    }
    // Order is important here, STATICCALL might overlap with DELEGATECALL.
    if (isDelegateCall)
        m_context << Instruction::DELEGATECALL;
    else if (isCallCode)
        m_context << Instruction::CALLCODE;
    else if (useStaticCall)
        m_context << Instruction::STATICCALL;
    else
        m_context << Instruction::CALL;

    unsigned remainsSize =
        2 + // contract address, input_memory_end
        (_functionType.valueSet() ? 1 : 0) +
        (_functionType.gasSet() ? 1 : 0) +
        (!_functionType.isBareCall() ? 1 : 0);

    if (returnSuccessCondition)
        m_context << swapInstruction(remainsSize);
    else
    {
        //Propagate error condition (if CALL pushes 0 on stack).
        m_context << Instruction::ISZERO;
        m_context.appendConditionalRevert(true);
    }

    utils().popStackSlots(remainsSize);

    if (returnSuccessCondition)
    {
        // already there
    }
    else if (funKind == FunctionType::Kind::RIPEMD160)
    {
        // fix: built-in contract returns right-aligned data
        utils().fetchFreeMemoryPointer();
        utils().loadFromMemoryDynamic(IntegerType(160), false, true, false);
        utils().convertType(IntegerType(160), FixedBytesType(20));
    }
    else if (funKind == FunctionType::Kind::ECRecover)
    {
        // Output is 32 bytes before input / free mem pointer.
        // Failing ecrecover cannot be detected, so we clear output before the call.
        m_context << u256(32);
        utils().fetchFreeMemoryPointer();
        m_context << Instruction::SUB << Instruction::MLOAD;
    }
    else if (!returnTypes.empty())
    {
        utils().fetchFreeMemoryPointer();
        // Stack: return_data_start

        // The old decoder did not allocate any memory (i.e. did not touch the free
        // memory pointer), but kept references to the return data for
        // (statically-sized) arrays
        bool needToUpdateFreeMemoryPtr = false;
        if (dynamicReturnSize || m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2))
            needToUpdateFreeMemoryPtr = true;
        else
            for (auto const& retType: returnTypes)
                if (dynamic_cast<ReferenceType const*>(retType.get()))
                    needToUpdateFreeMemoryPtr = true;

        // Stack: return_data_start
        if (dynamicReturnSize)
        {
            solAssert(haveReturndatacopy, "");
            m_context.appendInlineAssembly("{ returndatacopy(return_data_start, 0, returndatasize()) }", {"return_data_start"});
        }
        else
            solAssert(retSize > 0, "");
        // Always use the actual return length, and not our calculated expected length, if returndatacopy is supported.
        // This ensures it can catch badly formatted input from external calls.
        m_context << (haveReturndatacopy ? eth::AssemblyItem(Instruction::RETURNDATASIZE) : u256(retSize));
        // Stack: return_data_start return_data_size
        if (needToUpdateFreeMemoryPtr)
            m_context.appendInlineAssembly(R"({
                // round size to the next multiple of 32
                let newMem := add(start, and(add(size, 0x1f), not(0x1f)))
                mstore(0x40, newMem)
            })", {"start", "size"});

        utils().abiDecode(returnTypes, true);
    }
}

void ExpressionCompiler::appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression)
{
    solUnimplementedAssert(_expectedType.isValueType(), "Not implemented for non-value types.");
    _expression.accept(*this);
    utils().convertType(*_expression.annotation().type, _expectedType, true);
    utils().storeInMemoryDynamic(_expectedType);
}

void ExpressionCompiler::appendVariable(VariableDeclaration const& _variable, Expression const& _expression)
{
    if (!_variable.isConstant())
        setLValueFromDeclaration(_variable, _expression);
    else
    {
        _variable.value()->accept(*this);
        utils().convertType(*_variable.value()->annotation().type, *_variable.annotation().type);
    }
}

void ExpressionCompiler::setLValueFromDeclaration(Declaration const& _declaration, Expression const& _expression)
{
    if (m_context.isLocalVariable(&_declaration))
        setLValue<StackVariable>(_expression, dynamic_cast<VariableDeclaration const&>(_declaration));
    else if (m_context.isStateVariable(&_declaration))
        setLValue<StorageItem>(_expression, dynamic_cast<VariableDeclaration const&>(_declaration));
    else
        BOOST_THROW_EXCEPTION(InternalCompilerError()
            << errinfo_sourceLocation(_expression.location())
            << errinfo_comment("Identifier type not supported or identifier not found."));
}

void ExpressionCompiler::setLValueToStorageItem(Expression const& _expression)
{
    setLValue<StorageItem>(_expression, *_expression.annotation().type);
}

bool ExpressionCompiler::cleanupNeededForOp(Type::Category _type, Token::Value _op)
{
    if (Token::isCompareOp(_op) || Token::isShiftOp(_op))
        return true;
    else if (_type == Type::Category::Integer && (_op == Token::Div || _op == Token::Mod))
        return true;
    else
        return false;
}

CompilerUtils ExpressionCompiler::utils()
{
    return CompilerUtils(m_context);
}

}
}