1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Module for applying replacement rules against Expressions.
*/
#include <libyul/optimiser/SimplificationRules.h>
#include <libyul/optimiser/Utilities.h>
#include <libyul/optimiser/ASTCopier.h>
#include <libyul/optimiser/Semantics.h>
#include <libyul/optimiser/SyntacticalEquality.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <libevmasm/RuleList.h>
using namespace std;
using namespace dev;
using namespace dev::yul;
SimplificationRule<Pattern> const* SimplificationRules::findFirstMatch(
Expression const& _expr,
map<string, Expression const*> const& _ssaValues
)
{
if (_expr.type() != typeid(FunctionalInstruction))
return nullptr;
static SimplificationRules rules;
assertThrow(rules.isInitialized(), OptimizerException, "Rule list not properly initialized.");
FunctionalInstruction const& instruction = boost::get<FunctionalInstruction>(_expr);
for (auto const& rule: rules.m_rules[byte(instruction.instruction)])
{
rules.resetMatchGroups();
if (rule.pattern.matches(_expr, _ssaValues))
return &rule;
}
return nullptr;
}
bool SimplificationRules::isInitialized() const
{
return !m_rules[byte(solidity::Instruction::ADD)].empty();
}
void SimplificationRules::addRules(vector<SimplificationRule<Pattern>> const& _rules)
{
for (auto const& r: _rules)
addRule(r);
}
void SimplificationRules::addRule(SimplificationRule<Pattern> const& _rule)
{
m_rules[byte(_rule.pattern.instruction())].push_back(_rule);
}
SimplificationRules::SimplificationRules()
{
// Multiple occurrences of one of these inside one rule must match the same equivalence class.
// Constants.
Pattern A(PatternKind::Constant);
Pattern B(PatternKind::Constant);
Pattern C(PatternKind::Constant);
// Anything.
Pattern X;
Pattern Y;
A.setMatchGroup(1, m_matchGroups);
B.setMatchGroup(2, m_matchGroups);
C.setMatchGroup(3, m_matchGroups);
X.setMatchGroup(4, m_matchGroups);
Y.setMatchGroup(5, m_matchGroups);
addRules(simplificationRuleList(A, B, C, X, Y));
assertThrow(isInitialized(), OptimizerException, "Rule list not properly initialized.");
}
Pattern::Pattern(solidity::Instruction _instruction, vector<Pattern> const& _arguments):
m_kind(PatternKind::Operation),
m_instruction(_instruction),
m_arguments(_arguments)
{
}
void Pattern::setMatchGroup(unsigned _group, map<unsigned, Expression const*>& _matchGroups)
{
m_matchGroup = _group;
m_matchGroups = &_matchGroups;
}
bool Pattern::matches(Expression const& _expr, map<string, Expression const*> const& _ssaValues) const
{
Expression const* expr = &_expr;
// Resolve the variable if possible.
// Do not do it for "Any" because we can check identity better for variables.
if (m_kind != PatternKind::Any && _expr.type() == typeid(Identifier))
{
string const& varName = boost::get<Identifier>(_expr).name;
if (_ssaValues.count(varName))
expr = _ssaValues.at(varName);
}
assertThrow(expr, OptimizerException, "");
if (m_kind == PatternKind::Constant)
{
if (expr->type() != typeid(Literal))
return false;
Literal const& literal = boost::get<Literal>(*expr);
if (literal.kind != assembly::LiteralKind::Number)
return false;
if (m_data && *m_data != u256(literal.value))
return false;
assertThrow(m_arguments.empty(), OptimizerException, "");
}
else if (m_kind == PatternKind::Operation)
{
if (expr->type() != typeid(FunctionalInstruction))
return false;
FunctionalInstruction const& instr = boost::get<FunctionalInstruction>(*expr);
if (m_instruction != instr.instruction)
return false;
assertThrow(m_arguments.size() == instr.arguments.size(), OptimizerException, "");
for (size_t i = 0; i < m_arguments.size(); ++i)
if (!m_arguments[i].matches(instr.arguments.at(i), _ssaValues))
return false;
}
else
{
assertThrow(m_arguments.empty(), OptimizerException, "\"Any\" should not have arguments.");
}
if (m_matchGroup)
{
// We support matching multiple expressions that require the same value
// based on identical ASTs, which have to be movable.
// TODO: add tests:
// - { let x := mload(0) let y := and(x, x) }
// - { let x := 4 let y := and(x, y) }
// This code uses `_expr` again for "Any", because we want the comparison to be done
// on the variables and not their values.
// The assumption is that CSE or local value numbering has been done prior to this step.
if (m_matchGroups->count(m_matchGroup))
{
assertThrow(m_kind == PatternKind::Any, OptimizerException, "Match group repetition for non-any.");
Expression const* firstMatch = (*m_matchGroups)[m_matchGroup];
assertThrow(firstMatch, OptimizerException, "Match set but to null.");
return
SyntacticalEqualityChecker::equal(*firstMatch, _expr) &&
MovableChecker(_expr).movable();
}
else if (m_kind == PatternKind::Any)
(*m_matchGroups)[m_matchGroup] = &_expr;
else
{
assertThrow(m_kind == PatternKind::Constant, OptimizerException, "Match group set for operation.");
// We do not use _expr here, because we want the actual number.
(*m_matchGroups)[m_matchGroup] = expr;
}
}
return true;
}
solidity::Instruction Pattern::instruction() const
{
assertThrow(m_kind == PatternKind::Operation, OptimizerException, "");
return m_instruction;
}
Expression Pattern::toExpression(SourceLocation const& _location) const
{
if (matchGroup())
return ASTCopier().translate(matchGroupValue());
if (m_kind == PatternKind::Constant)
{
assertThrow(m_data, OptimizerException, "No match group and no constant value given.");
return Literal{_location, assembly::LiteralKind::Number, formatNumber(*m_data), ""};
}
else if (m_kind == PatternKind::Operation)
{
vector<Expression> arguments;
for (auto const& arg: m_arguments)
arguments.emplace_back(arg.toExpression(_location));
return FunctionalInstruction{_location, m_instruction, std::move(arguments)};
}
assertThrow(false, OptimizerException, "Pattern of kind 'any', but no match group.");
}
u256 Pattern::d() const
{
Literal const& literal = boost::get<Literal>(matchGroupValue());
assertThrow(literal.kind == assembly::LiteralKind::Number, OptimizerException, "");
assertThrow(isValidDecimal(literal.value) || isValidHex(literal.value), OptimizerException, "");
return u256(literal.value);
}
Expression const& Pattern::matchGroupValue() const
{
assertThrow(m_matchGroup > 0, OptimizerException, "");
assertThrow(!!m_matchGroups, OptimizerException, "");
assertThrow((*m_matchGroups)[m_matchGroup], OptimizerException, "");
return *(*m_matchGroups)[m_matchGroup];
}
|